All Issue

2023 Vol.55, Issue 2 Preview Page

Research Article

30 April 2023. pp. 19-29
Aziz, T., Farid, A., Haq, F., Kiran, M., Ullah, A., Zhang, K., Li, C., Ghazanfar S., Sun, H., Ullah R., Ali, A., Muzammal, M., Shah, M., Akhtar, N., Selim, S., Hagagy, N., Samy M., and Al Jaouni S. K., A review on the modification cellulose and its applications, Polymers 14(15):3206-3239 (2022). 10.3390/polym1415320635956720PMC9371096
Yoon, H. J., Gil, B. M., Lee, J. H., Park, J. E., Lim, J., Jo, M. J., Jung, K., and Wie J. J., Thermal and mechanical properties of polypylene/cellulose nanofiber composites, Polymer (Korea) 44(3):255-263 (2020). 10.7317/pk.2020.44.3.255
Kim, Y. S., Yu, S. M., and Park C. S., Screening of cellulolytic microorganism and characterization of cellulase from Bacillus subtilis PFB-1, Journal of Chitin and Chitosan 24(3): 179-185 (2019). 10.17642/jcc.24.3.5
Alokika, Kumar, V., and Singh B., Biochemical characteristics of a novel ethanol-tolerant xylanase from Bacillus subtilis subsp. subtilis JJBS250 and its applicability in saccharification of rice straw, Biomass Conversion and Biorefinery 13:1937-1949 (2023). 10.1007/s13399-020-01257-0
Arsov, A., Petrov, K., and Petrova, P., Enhanced activity by genetic complementarity: Heterologous secretion of clostridial cellulases by Bacillus licheniformis and Bacillus velezensis, Molecules 26(18):5625-5639 (2021). 10.3390/molecules2618562534577096PMC8468253
Ou, M. S., Mohammed, N., Ingram, L. O., and Shanmugam K. T., Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts, Applied Biochemistry and Biotechnology 155:76-82 (2009). 10.1007/s12010-008-8509-419156365
Ye, M., Sun, L., Yang, R., Wang, Z., and Qi, K. Z., The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed, Royal Society Open Science 4:171012- 171023 (2017). 10.1098/rsos.17101229134097PMC5666280
Tabssum, F., Irfan, M., Shakir, H. A., and Qazi, J. I., RSM based optimization of nutritional conditions for cellulase mediated Saccharification by Bacillus cereus, Journal of Biological Engineering 12(1):1-10 (2018). 10.1186/s13036-018-0097-429755582PMC5934882
Li, Y., Li, G., Zhao, X., Shao, Y., Wu, M., and Ma, T., Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis, 3 Biotech 9(6): 225-233 (2019). 10.1007/s13205-019-1749-x31139540PMC6529495
Xiong, Y., Wang, Y., Yu, Y., Li, Q., Wang, H., Chen, R., and He, N., Production and characterization of a novel bioflocculant from Bacillus licheniformis, Applied and Environmental Microbiology 76(9):2778-2782 (2010). 10.1128/AEM.02558-0920208025PMC2863459
Goyal, V., Mittal, A., Bhuwal, A. K., Singh, G., Yadav, A., and Aggarwal, N. K., Parametric optimization of cultural conditions for carboymethyl cellulase production using pretreated rice straw by Bacillus sp. 313SI under stationary and shaking conditions, Biotechnology Research International 2014:1-7 (2014). 10.1155/2014/65183924868469PMC4020544
Doan, C. T., Tran, T. N., Nguyen, T. T., Tran, T. H., Nguyen, V. B., Tran, T. D., Nguyen, A. D., and Wang, S. L., Production of sucrolytic enzyme by Bacillus licheniformis by the bioconversion of pomelo albedo as a carbon source, Polymers 13(12):1959-1976 (2021). 10.3390/polym1312195934199171PMC8231626
Fatani, S., Saito, Y., Alarawi, M., Gojobori, T., and Mineta K., Genome sequencing and identification of cellulase genes in Bacillus paralicheniformis strains from the red sea, BMC Microbiology 21:254-265 (2021). 10.1186/s12866-021-02316-w34548024PMC8456639
Andlar, M., Reic, T., Mardetko, N., Kracher, D., Ludwig, R., and Santek, B., Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation, Engineering in Life Sciences 18(11): 768-778 (2018). 10.1002/elsc.20180003932624871PMC6999254
Costa, M. N., Beigas, B., Jacob, J. M., Santos, D. S., Gomes, J., Baptista, P. V., Martins, R., Inacio, J., and Fortunato, E., A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper, Nanotechnology 25(9):94006- 94017 (2014). 10.1088/0957-4484/25/9/09400624521980
Beyene, D., Chae, M., Dai, J., Danumah, C., Tosto, F., Demesa, A. G., and Bressler, D. C., Characterization of cellulase-treated fibers and resulting cellulose nonocrystals generated through acid hyrolysis, Materials 11(8):1272-1287 (2018). 10.3390/ma1108127230042345PMC6117684
Smirnov, M. V., and Loginova, S. V., 3D model of short-range order of one-hour milled cellulose, Journal of Physics: Conference Series 1038:12059-12062 (2018). 10.1088/1742-6596/1038/1/012059
Rao, X., Kuga, S., Wu, M., and Huang, Y., Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling, Cellulose 22:2341-2348 (2015). 10.1007/s10570-015-0659-2
Dias, I. K. R., Siqueira, G. G., and Arantes, V., Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties, International Journal of Biological Macromolecules 220:589-600 (2022). 10.1016/j.ijbiomac.2022.08.04735963352
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 55
  • No :2
  • Pages :19-29
  • Received Date : 2023-03-24
  • Revised Date : 2023-04-10
  • Accepted Date : 2023-04-12