All Issue

2023 Vol.55, Issue 2 Preview Page

Research Article

30 April 2023. pp. 10-18
Abstract
References
1
Gericke, M., Trygg, J., and Fardim, P., Functional cellulose beads: Preparation, characterization, and applications, Chemical Reviews 113:4812-4836 (2013). 10.1021/cr300242j23540980
2
Bialki, E., Stenqvist, B., Fang, Y., Östlund, Å., Furó, I., Lindman, B., Lund, M., and Bernin, D., Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution, Journal of Physical Chemistry Letters 7(24): 5044-5048 (2016). 10.1021/acs.jpclett.6b0234627973886
3
Lyytikäinen, K., Saukkonen, E., Kajanto, I., and Käyhkö, J., The effect of hemicellulose extraction on fiber charge properties and retention behavior of kraft pulp fibers, BioResources 6(1): 219-231 (2011). 10.15376/biores.6.1.219-231
4
Xu, F. and Cho, B.-U., Preparation of porous regenerated cellulose microstructures via emulsion-coagulation technique, Cellulose 29:1527- 1542 (2022). 10.1007/s10570-022-04428-6
5
Xu, F. and Cho, B.-U., Preparation and optimization of porous regenerated cellulose microspheres from cellulose tetraethylammonium/urea solution for adsorption of cationic methylene blue dye, BioResources 18(1):748-766 (2023). 10.15376/biores.18.1.748-766
6
Rahman, M. S., Hasan, M. S., Nitai, A. S., Nam, S., Karmakar, A. K., Ahsan, M. S., and Ahmed, M. B., Recent developments of carboxymethyl cellulose, Polymers 13(8):1345 (2021). 10.3390/polym1308134533924089PMC8074295
7
Agarwal, T., Narayana, S. G. H., Pal, K., Pramanik, K., Giri, S., and Banerjee, I., Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery, International Journal of Biological Macromolecules 75:409- 417 (2015). 10.1016/j.ijbiomac.2014.12.05225680962
8
Altam, A. A., Zhu, L., Huang, W., Huang, H., and Yang, S., Polyelectrolyte complex beads of carboxymethylcellulose and chitosan: The controlled formation and improved properties, Carbohydrate Polymer Technologies and Applications 2:100100 (2021). 10.1016/j.carpta.2021.100100
9
Hosny, E. A., and Al-Helw, A. A. R. M., Effect of coating of aluminum carboxymethylcellulose beads on the release and bioavailability of diclofenac sodium. Pharmaceutica Acta Helvetiae, 72(5):255-261 (1998). 10.1016/S0031-6865(97)00040-X9540457
10
Yang, C., Yang, H.-R., Li, S.-S., An, Q.-D., Zhai, S.-R., and Xiao, Z.-Y., Rationally designed carboxymethylcellulose-based sorbents crosslinked by targeted ions for static and dynamic capture of heavy metals: Easy recovery and affinity mechanism, Journal of Colloid and Interface Science 625:651-663 (2022). 10.1016/j.jcis.2022.06.08635764045
11
Yang, H.-R., Li, S.-S., Chan, X.-C., Yang, C., An, Q.-D., Zhai, S.-R., and Xiao, Z.-Y., Hollow polyethyleneimine/carboxymethyl celllulose beads with abundant and accessible sorption sites for ultra-efficient chromium (VI) and phosphate removal, Separation and Purification Technology 278:119607 (2022). 10.1016/j.seppur.2021.119607
12
Jung, M., Kim, J., Jung, S., Kim, Y., Bang, J., Yeo, H., Choi, I.-G., and Kwak, H. W., pH-Responsive hydrogels of carboxymethyl cellulose and polyethyleneimine for efficient removal of ionic dye molecules, BioResources 17(4):5785-5802 (2022). 10.15376/biores.17.4.5785-5802
13
Zhivkov, A. M., Electric properties of carboxymethyl cellulose, In Cellulose - Fundamental Aspects, Van de Ven, T.G.M. (Ed.), IntechOpen, UK, pp. 199-201 (2013).
14
Rajalaxmi, D., Jiang, N., Leslie, G., and Ragauskas, A. J., Synthesis of novel water- soluble sulfonated cellulose, Carbohydrate Research 345:284-290 (2010) 10.1016/j.carres.2009.09.03719959161
15
Liimatainen, H., Visanko, M., Sirviö, J., Hormi, O., and Niinimäki, J., Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment, Cellulose 20:741-749 (2013). 10.1007/s10570-013-9865-y
16
Rocha, I., Ferraz, N., Mihranyan, A., Strømme, M., and Lindh, J., Sulfonated nanocellulose beads as potential immunosorbent, Cellulose 25:1899-1910 (2018). 10.1007/s10570-018-1661-2
17
Dong, C., Zhang, H., Pang, Z., Liu, Y., and Zhang, F., Sulfonated modification of cotton linter and its application as adsorbent for high- efficiency removal of lead (II) in effluent, Bioresource Technology 146:512-518 (2013). 10.1016/j.biortech.2013.07.10823973968
18
Dong, C., Wang, B., Meng, Y., and Pang, Z., Preparation, structural changes and adsorption performance of heavy metal ions on sulfonated cellulose with varying degrees of substitution, Holzforschung 73(5):501-507 (2019). 10.1515/hf-2018-0147
19
KS M ISO 5351, Pulps - Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution, Korean Standards Association (2020).
20
Trygg, J., Trivedi, P., and Fardim, P., Controlled depolymerisation of cellulose to a given degree of polymerisation, Cellulose Chemistry and Technology 50(5-6):557-567 (2016).
21
Sirviö, J. A. and Heiskanen, J. P., Room- temperature dissolution and chemical modification of cellulose in aqueous tetraethylammonium hydroxide-carbamide solutions, Cellulose 27:1933-1950 (2020). 10.1007/s10570-019-02907-x
22
Segal, L., Creely, J. J., Martin, A. E. Jr., and Conrad, C. M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal 29(10):786-794 (1959). 10.1177/004051755902901003
23
Dong, C., Zhang, F., Pang, Z., and Yang, G., Efficient and selective adsorption of multi- metal ions using sulfonated cellulose as adsorbent, Carbohydrate Polymers 151:230-236 (2016). 10.1016/j.carbpol.2016.05.06627474562
24
Luo, J., Semenikhin, N., Chang, H., Moon, R. J., and Kumar, S., Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility, Carbohydrate Polymers 181:247-255 (2018). 10.1016/j.carbpol.2017.10.07729253969
25
Anto, P. L., Anto, R. J., Varghese, H. T., Panicker, C. Y., Philip, D., Andrade, G. F. S., and Brolo, A. G., Spectroscopic investigations and computational study of sulfur trioxide-pyridine complex, Journal of Raman Spectroscopy 42(9):1812-1819 (2011). 10.1002/jrs.2928
26
Davanliu, A., Lee, J. D., Basu, S., and Kumar, R., Effect of viscosity and surfae tension on breakup and coalescence of bicomponent sprays, Chemical Engineering Science 131:243-255 (2015). 10.1016/j.ces.2015.03.057
27
Kim, Y., Jang, M., and Cho, B.-U., Cationization of cellulose dissolved in TEAOH/urea solvent and its preparation of cellulose beads: Effect of added amount of GTAC, Journal of Korea TAPPI 54(6):85-93 (2022). 10.7584/JKTAPPI.2022.12.54.6.85
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 55
  • No :2
  • Pages :10-18
  • Received Date : 2023-02-16
  • Revised Date : 2023-04-10
  • Accepted Date : 2023-04-11