All Issue

2024 Vol.56, Issue 6 Preview Page

Research Article

30 December 2024. pp. 84-93
Abstract
References
1

Venkatachalam, D. and Kaliappa, S., Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications, Reviews in Chemical Engineering 39(1):127-171 (2023).

10.1515/revce-2020-0102
2

Zohourian, M. M. and Kabiri, K., Superabsorbent polymer materials: a review (2008).

3

Chen, J. and Zhao, Y., Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents, Journal of Applied Polymer Science 75(6):808-814 (2000).

10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
4

Chen, J., Wu, J., Raffa, P., Picchioni, F., and Koning, C. E., Superabsorbent polymers: from long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives, Progress in Polymer Science 125:101475 (2022).

10.1016/j.progpolymsci.2021.101475
5

Das, D., Prakash, P., Rout, P. K., and Bhaladhare, S., Synthesis and characterization of superabsorbent cellulose‐based hydrogel for agriculture application, Starch‐Stärke 73(1-2):1900284 (2021).

10.1002/star.201900284
6

Kaur, P., Bohidar, H. B., Nisbet, D. R., Pfeffer, F. M., Rifai, A., Williams, R., and Agrawal, R., Waste to high-value products: The performance and potential of carboxymethylcellulose hydrogels via the circular economy, Cellulose 30(5):2713-2730 (2023).

10.1007/s10570-023-05068-0
7

Fekete, T., Borsa, J., Takács, E., and Wojnárovits, L. Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation, Chemistry Central Journal 11:1-10 (2017).

10.1186/s13065-017-0273-529086828PMC5449362
8

Capanema, N. S., Mansur, A. A., Mansur, H. S., de Jesus, A. C., Carvalho, S. M., Chagas, P., and de Oliveira, L. C. (2018). Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environmental technology, 39(22):2856-2872.

10.1080/09593330.2017.136784528805161
9

Kaur, P., Bohidar, H. B., Nisbet, D. R., Pfeffer, F. M., Rifai, A., Williams, R., and Agrawal, R., Waste to high-value products: The performance and potential of carboxymethylcellulose hydrogels via the circular economy, Cellulose 30(5):2713-2730 (2023).

10.1007/s10570-023-05068-0
10

Choi, S. R. and Lee, J. M., Fabrication and characterization of biomass-derived superabsorbent Bio-gel, Journal of Korea TAPPI 55(3):51-59 (2023).

10.7584/JKTAPPI.2023.6.55.3.51
11

Choi, S. R. and Lee, J. M., Fabrication of Superabsorbent Biogel from Carboxymethyl Cellulose, Journal of Korea TAPPI 53(1):47-54 (2021).

10.7584/JKTAPPI.2021.02.53.1.47
12

Choi, S. R. and Lee, J. M., Fabrication of superabsorbent material from carboxymethyl cellulose and seaweed, Journal of Korea TAPPI 54(1):26-34 (2022).

10.7584/JKTAPPI.2022.2.54.1.26
13

Estevam, B. R., Perez, I. D., Moraes, Â. M., and Fregolente, L. V., A review of the strategies used to produce different networks in cellulose-based hydrogels, Materials Today Chemistry 34:101803 (2023).

10.1016/j.mtchem.2023.101803
14

Wang, H., Yu, X., Tang, X., Sun, Y., Zeng, X., and Lin, L., A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor, Cellulose pp. 1-14 (2022).

10.1007/s10570-021-04321-8
15

Arumughan, V., Nypelö, T., Hasani, M., Brelid, H., Albertsson, S., Wågberg, L., and Larsson, A., Specific ion effects in the adsorption of carboxymethyl cellulose on cellulose: The influence of industrially relevant divalent cations, Colloids and Surfaces A: Physicochemical and Engineering Aspects 626:127006 (2021).

10.1016/j.colsurfa.2021.127006
16

Kaczmarek, B., Nadolna, K., and Owczarek, A., The physical and chemical properties of hydrogels based on natural polymers, Hydrogels Based on Natural Polymers pp. 151-172 (2020).

10.1016/B978-0-12-816421-1.00006-9
17

Hennink, W. E. and van Nostrum, C. F., Novel crosslinking methods to design hydrogels, Advanced Drug Delivery Reviews 64:223-236 (2012).

10.1016/j.addr.2012.09.009
18

Persano, F., Malitesta, C., and Mazzotta, E., Cellulose-Based Hydrogels for Wastewater Treatment: A Focus on Metal Ions Removal, Polymers 16(9):1292 (2024).

10.3390/polym1609129238732760PMC11085632
19

Akter, M., Bhattacharjee, M., Dhar, A. K., Rahman, F. B. A., Haque, S., Rashid, T. U., and Kabir, S. F., Cellulose-based hydrogels for wastewater treatment: A concise review, Gels 7(1):30 (2021).

10.3390/gels701003033803815PMC8005947
20

More, A. P. and Chapekar, S., Irradiation assisted synthesis of hydrogel: A Review, Polymer Bulletin 81(7):5839-5908 (2024).

10.1007/s00289-023-05020-z
21

Shin, H. K., Park, M., Kang, P. H., Rhee, K. Y., and Park, S. J., Role of electron beam irradiation on superabsorbent behaviors of carboxymethyl cellulose, Research on Chemical Intermediates 41:6815-6823 (2015).

10.1007/s11164-014-1779-2
22

Harsh, D. C. and Gehrke, S. H., Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels, Journal of Controlled Release 17(2):175-185 (1991).

10.1016/0168-3659(91)90057-K
23

Wach, R. A., Mitomo, H., Nagasawa, N., and Yoshii, F., Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH, Radiation Physics and Chemistry 68(5):771-779 (2003).

10.1016/S0969-806X(03)00403-1
24

Fei, B., Wach, R. A., Mitomo, H., Yoshii, F., and Kume, T., Hydrogel of biodegradable cellulose derivatives. I. Radiation‐induced crosslinking of CMC, Journal of Applied Polymer Science 78(2):278-283 (2000).

10.1002/1097-4628(20001010)78:2<278::AID-APP60>3.0.CO;2-9
25

Siddiqua, A., Ranjha, N. M., Rehman, S., Shoukat, H., Ramzan, N., and Sultana, H., Preparation and characterization of methylene bisacrylamide crosslinked pectin/acrylamide hydrogels, Polymer Bulletin 79(9):7655-7677 (2022).

10.1007/s00289-021-03870-z
26

Enoch, K. and Somasundaram, A. A., Improved mechanical properties of Chitosan/PVA hydrogel-A detailed Rheological study, Surfaces and Interfaces 41:103178 (2023).

10.1016/j.surfin.2023.103178
27

Ma, J., Lin, Y., Chen, X., Zhao, B., and Zhang, J., Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions, Food Hydrocolloids 38:119-128 (2014).

10.1016/j.foodhyd.2013.11.016
28

Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., and Zhang, M., Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing, Food Hydrocolloids 87:413-424 (2019).

10.1016/j.foodhyd.2018.08.026
29

Mewis, J. and Wagner, N. J., Thixotropy, Advances in Colloid and Interface Science 147:214-227 (2009).

10.1016/j.cis.2008.09.00519012872
30

Raju, L., AR, S. C. L., Prakash, N. U., and Rajkumar, E., Chitosan-terephthaldehyde hydrogels-Effect of concentration of cross-linker on structural, swelling, thermal and antimicrobial properties, Materialia 16:101082 (2021).

10.1016/j.mtla.2021.101082
31

Dharmalingam, K. and Anandalakshmi, R., Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications, International Journal of Biological Macromolecules 134:815-829 (2019).

10.1016/j.ijbiomac.2019.05.02731077697
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :6
  • Pages :84-93
  • Received Date : 2024-11-21
  • Revised Date : 2024-12-11
  • Accepted Date : 2024-12-11