All Issue

2024 Vol.56, Issue 4 Preview Page

Research Article

30 August 2024. pp. 28-35
Abstract
References
1

Aulin, C., Gällstedt, M., and Lindström, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17(3):559-574 (2010).

10.1007/s10570-009-9393-y
2

Aulin, C., Salazar-Alvarez, G., and Lindström, T., High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale 4(20):6622-6628 (2012).

10.1039/c2nr31726e22976562
3

Honorato, C., Kumar, V., Liu, J., Koivula, H., Xu, C., and Toivakka, M., Transparent nanocellulose-pigment composite films, Journal of Materials Science 50(22):7343-7352 (2015).

10.1007/s10853-015-9291-7
4

Kumar, V., Bollström, R., Yang, A., Chen, Q., Chen, G., Salminen, P., Bousfield, D., and Toivakka, M., Comparison of nano-and microfibrillated cellulose films, Cellulose 21(5):3443-3456 (2014).

10.1007/s10570-014-0357-5
5

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A. Nanocelluloses: a new family of nature‐based materials, Angewandte Chemie International Edition 50(24):5438-5466 (2011).

10.1002/anie.20100127321598362
6

Won, J. M., Effects of refining condition on the specific energy consumption and physical properties of liner, Journal of Korea TAPPI 36(2):17-23 (2004).

7

Brodin, F. W., Gregersen, Ø. W., and Syverud, K., Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material - A review, Nordic Pulp & Paper Research Journal 29(1):156-166 (2014).

10.3183/npprj-2014-29-01-p156-166
8

Chaker, A. and Boufi, S., Cationic nanofibrillar cellulose with high antibacterial properties, Carbohydrate Polymers 131:224-232 (2015).

10.1016/j.carbpol.2015.06.00326256179
9

Song, Y., Zhang, J., Gan, W., Zhou, J., and Zhang, L., Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution, Industrial and Engineering Chemistry Research 49(3):1242-1246 (2010).

10.1021/ie9015057
10

Sehaqui, H., Mautner, A., de Larraya, U. P., Pfenninger, N., Tingaut, P., and Zimmermann, T., Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties, Carbohydrate Polymers 135:334-340 (2016).

10.1016/j.carbpol.2015.08.09126453885
11

Thomas, B., Raj, M. C., Joy, J., Moores, A., Drisko, G. L., and Sanchez, C., Nanocellulose, a versatile green platform: from biosources to materials and their applications, Chemical Reviews 118(24):11575-11625 (2018).

10.1021/acs.chemrev.7b0062730403346
12

Littunen, K., de Castro, J. S., Samoylenko, A., Xu, Q., Quaggin, S., Vainio, S., and Seppala, J., Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties, European Polymer Journal 75:116-124 (2016).

10.1016/j.eurpolymj.2015.12.008
13

Lourenço, A. F., Gamelas, J. A., Nunes, T., Amaral, J., Mutje, P., and Ferreira, P. J., Influence of TEMPO-oxidized cellulose nanofibrils on the properties of filler-containing papers, Cellulose 24:349-362 (2017).

10.1007/s10570-016-1121-9
14

Lourenco, A. F., Gamelas, J. A., Sarmento, P., and Ferreira, P. J., Enzymatic nanocellulose in papermaking-The key role as filler flocculant and strengthening agent, Carbohydrate Polymers 224:115200 (2019).

10.1016/j.carbpol.2019.11520031472843
15

Korhonen, M. and Laine, J., Flocculation and retention of fillers with nanocelluloses, Nordic Pulp & Paper Research Journal 29(1):119-128 (2014).

10.3183/npprj-2014-29-01-p119-128
16

Ottesen, V., Syverud, K., and Gregersen, Ø. W., Mixing of cellulose nanofibrils and individual furnish components: Effects on paper properties and structure, Nordic Pulp & Paper Research Journal 31(3):441-447 (2016).

10.3183/npprj-2016-31-03-p441-447
17

Habibi, Y., Lucia, L. A., and Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly and applications, Chemical Reviews 110(6):3479-3500 (2010).

10.1021/cr900339w20201500
18

Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M. and Isogai, A., Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules 7(6):1687-1691 (2006).

10.1021/bm060154s16768384
19

Noguchi, Y., Homma, I., and Matsubara, Y., Complete nanofibrillation of cellulose prepared by phosphorylation, Cellulose 24:1295-1305 (2017).

10.1007/s10570-017-1191-3
20

Isogai, A. Cellulose nanofibers: Recent progress and future prospects, Journal of Fiber Science and Technology 76(10):310-326 (2020).

10.2115/fiberst.2020-0039
21

Lee, J. Y., Kim, S. H., Kim, K. M., Jo, H. M., and Sung, Y. J., Study on the surface modification of pulp with cationic polyelectrolyte for the manufacture of cationic cellulose nanofibril, Journal of Korea TAPPI 51(6):152-15 (2019).

10.7584/JKTAPPI.2019.12.51.6.152
22

Jo, H. M., Lee, Y. H., Kim, D. H., Lee, S. H., and Lee, J. Y., Development of membrane filter for water treatment using anionic and cationic cellulose nanofibers, Journal of Korea TAPPI 53(6):61-68 (2021).

10.7584/JKTAPPI.2021.12.53.6.61
23

Im, W., Park, S. Y., Yook, S., Goo, S., Lee, H. L., and Youn, H. J., Cationization of pulp fibers as pretreatment and preparation of cationic cellulose nanofibrils, Journal of Korea TAPPI 52(1):45-54 (2020).

10.7584/JKTAPPI.2020.02.52.1.45
24

Ye, Y., Oguzlu, H., Zhu, J., Zhu, P., Yang, P., Zhu, Y., and Jiang, F. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions, Advanced Functional Materials 33(2):2209787 (2023).

10.1002/adfm.202209787
25

Song, W. Y., Juhn, S., and Shin, S. J., Characteristics of cellulose nanofibril produced after quaternary amine pretreatment, Journal of Korea TAPP 50(5):107-113 (2018).

10.7584/JKTAPPI.2018.10.50.5.107
26

Lee, S. H., Jo, H. M., Kim, D. H., Lee, J. Y., Han, J. H., and Yun, K. Y., Evaluation of the Physical Properties of Carboxymethylated Cellulose Nanofiber Derived from Red Algae Pulp, Journal of Korea TAPPI 54(4):25-33 (2022).

10.7584/JKTAPPI.2022.08.54.4.25
27

Mendoza, D. J., Hossain, L., Browne, C., Raghuwanshi, V. S., Simon, G. P. and Garnier, G., Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation, Carbohydrate Polymers 245:116566 (2020).

10.1016/j.carbpol.2020.11656632718648
28

Benhamou, K., Dufresne, A., Magnin, A., Mortha, G., and Kaddami, H., Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohydrate Polymers 99:74-83 (2014).

10.1016/j.carbpol.2013.08.03224274481
29

Salim, L. O. A., Salmah, S., and Maulidiyah, M., The technique for separation and purification of gondorukem (gum rosin) from pine gum (pinus merkusii) with a simple distillation method, Journal of Physics: Conference Series 1899:012038 (2021).

10.1088/1742-6596/1899/1/012038
30

Dong, Y., Yan, Y., Wang, K., Li, J., Zhang, S., Xia, C., Shi, S. Q., and Cai, L., Improvement of water resistance, dimensional stability and mechanical properties of popular wood by rosin impregnation, European Journal of Wood and Wood Products 74:177-184 (2016).

10.1007/s00107-015-0998-6
31

Korpayev, S., Kavaklı, C., Çolak, Ş., and Kavaklı, P. A., Preparation and characterization of ethylenediamine modified glycidyl methacrylate-grafted nonwoven cotton fabric adsorbent, Cellulose 25:813-828 (2018).

10.1007/s10570-017-1558-5
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :4
  • Pages :28-35
  • Received Date : 2024-07-19
  • Revised Date : 2024-08-07
  • Accepted Date : 2024-08-08