Review
Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers 2:728 (2010).
10.3390/polym2040728Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Cellulose nanomaterials review: Structure, properties and nanocomposites, Chemical Society Reviews 40:3941 (2011).
10.1039/c0cs00108bNechyporchuk, O., Belgacem, M. N., and Pignon, F., Current progress in rheology of cellulose nanofibril suspensions, Biomacromolecules 17:2311 (2016).
10.1021/acs.biomac.6b00668Habibi, Y., Lucia, L. A., and Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chemical Reviews 110:3479 (2010).
10.1021/cr900339wRadeke, C., Pons, R., Mihajlovic, M., Knudsen, J. R., Butdayev, S., Kempen, P. J., Segeritz, C. P., Andresen, T. L., Pehmoller, C. K., Jensen, T. E., and Lind, J. U., Transparent and cell-guiding cellulose nanofiber 3D printing bioinks, ACS Applied Materials & Interfaces 15:2564 (2023).
10.1021/acsami.2c16126Wang, Q. Q., Sun, J. Z., Yao, Q., Ji, C. C., Liu, J., and Zhu, Q. Q., 3D printing with cellulose materials, Cellulose 25:4275 (2018).
10.1007/s10570-018-1888-yLi, V. C. F., Mulyadi, A., Dunn, C. K., Deng, Y. L., and Qi, H. J., Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties, ACS Sustainable Chemistry & Engineering 6:2011 (2018).
10.1021/acssuschemeng.7b03439Wang, X. J., Wang, Q. B., and Xu, C. L., Nanocellulose-based inks for 3D bioprinting: Key aspects in research development and challenging perspectives in applications—A Mini Review, Bioengineering 7:40 (2020).
10.3390/bioengineering702004032365578PMC7355978Ajdary, R., Huan, S. Q., Ezazi, N. Z., Xiang, W. C., Grande, R., Santos, H. A., and Rojas, O. J., Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds, Biomacromolecules 20:2770 (2019).
10.1021/acs.biomac.9b0052731117356PMC6620719Guvendiren, M., Molde, J., Soares, R. M. D., and Kohn, J., Designing biomaterials for 3D printing, ACS Biomaterials Science & Engineering 2:1679 (2016).
10.1021/acsbiomaterials.6b0012128025653PMC5181796Truby, R. L. and Lewis, J. A., Printing soft matter in three dimensions, Nature 540:371 (2016).
10.1038/nature21003Hull, S. M., Brunel, L. G., and Heilshorn, S. C., 3D bioprinting of cell-laden hydrogels for improved biological functionality, Advanced Materials 34:2103691 (2022).
10.1002/adma.20210369134672027PMC8988886Panda, B., Unluer, C., and Tan, M. J., Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing, Composites Part B: Engineering 176:107290 (2019).
10.1016/j.compositesb.2019.107290Maldonado-Rosas, R., Tejada-Ortigoza, V., Cuan-Urquizo, E., Mendoza-Cachú, D., Morales-de La Peña, M., Alvarado-Orozco, J. M., and Campanella, O. H., Evaluation of rheology and printability of 3D printing nutritious food with complex formulations, Additive Manufacturing 58:103030 (2022).
10.1016/j.addma.2022.103030Shin, S. and Hyun, J., Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing, Carbohydrate Polymers 263:117976 (2021).
10.1016/j.carbpol.2021.117976Zhou, G. Q., Li, M. C., Wang, F. M., Liu, C. Z., and Mei, C. T., 3D printing of cellulose nanofiber monoliths for thermal insulation and energy storage applications, Additive Manufacturing 59:103124 (2022).
10.1016/j.addma.2022.103124Wang, Q. B., Backman, O., Nuopponen, M., Xu, C. L., and Wang, X. J., Rheological and printability assessments on biomaterial inks of nanocellulose/photo-crosslinkable biopolymer in light-aided 3D printing, Frontiers in Chemical Engineering 3:723429 (2021).
10.3389/fceng.2021.723429Shin, S., Kwak, H., and Hyun, J., Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing, Carbohydrate Polymers 225:115235 (2019).
10.1016/j.carbpol.2019.115235Li, Y. Y., Wang, B., Ma, M. G., and Wang, B., Review of recent development on preparation, properties, and applications of cellulose-based functional materials, International Journal of Polymer Science 2018:8973643 (2018).
10.1155/2018/8973643Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3:71 (2011).
10.1039/C0NR00583EJiang, F. and Hsieh, Y. L., Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers 95:32 (2013).
10.1016/j.carbpol.2013.02.022Liu, S. S., Low, Z. X., Xie, Z. L., and Wang, H. T., TEMPO-oxidized cellulose nanofibers: A renewable nanomaterial for environmental and energy applications, Advanced Materials Technologies 6:2001180 (2021).
10.1002/admt.202001180Kaffashsaie, E., Yousefi, H., Nishino, T., Matsumoto, T., Mashkour, M., Madhoushi, M., and Kawaguchi, H., Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers, Carbohydrate Polymers 262:117938 (2021).
10.1016/j.carbpol.2021.117938Mazega, A., Signori-Iamin, G., Aguado, R. J., Tarrés, Q., Ramos, L. P., and Delgado-Aguilar, M., Enzymatic pretreatment for cellulose nanofiber production: Understanding morphological changes and predicting reducing sugar concentration, International Journal of Biological Macromolecules 253:127054 (2023).
10.1016/j.ijbiomac.2023.127054Rossi, B. R., Pellegrini, V. O. A., Cortez, A. A., Chiromito, E. M. S., Carvalho, A. J. F., Pinto, L. O., Rezende, C. A., Mastelaro, V. R., and Polikarpov, I., Cellulose nanofibers production using a set of recombinant enzymes, Carbohydrate Polymers 256:117510 (2021).
10.1016/j.carbpol.2020.117510Nie, S. X., Zhang, K., Lin, X. J., Zhang, C. Y., Yan, D. P., Liang, H. M., and Wang, S. F., Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils, Carbohydrate Polymers 181:1136 (2018).
10.1016/j.carbpol.2017.11.020Liu, X. Y., Jiang, Y., Qin, C. R., Yang, S., Song, X. P., Wang, S. F., and Li, K. C., Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics, Cellulose 25:7065 (2018).
10.1007/s10570-018-2071-1Liu, X. Y., Jiang, Y., Song, X. P., Qin, C. R., Wang, S. F., and Li, K. C., A bio-mechanical process for cellulose nanofiber production - Towards a greener and energy conservation solution, Carbohydrate Polymers 208:191 (2019).
10.1016/j.carbpol.2018.12.071Zhang, C. H., Wu, M., Yang, S., Song, X. P., and Xu, Y., Combined mechanical grinding and enzyme post-treatment leading to increased yield and size uniformity of cellulose nanofibrils, Cellulose 27:7447 (2020).
10.1007/s10570-020-03335-yHuan, S. Q., Ajdary, R., Bai, L., Klar, V., and Rojas, O. J., Low solids emulsion gels based on nanocellulose for 3D-printing, Biomacromolecules 20:635 (2019).
10.1021/acs.biomac.8b01224Palaganas, N. B., Mangadlao, J. D., de Leon, A. C., Palaganas, J. O., Pangilinan, K. D., Lee, Y. J., and Advincula, R. C., 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography, ACS Applied Materials & Interfaces 9:34314 (2017).
10.1021/acsami.7b09223Shin, S., Park, S., Park, M., Jeong, E., Na, K., Youn, H. J., and Hyun, J., Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives, Bioresources 12:2941 (2017).
10.15376/biores.12.2.2941-2954Yuan, R., Wu, K., and Fu, Q., 3D printing of all-regenerated cellulose material with truly 3D configuration: The critical role of cellulose microfiber, Carbohydrate Polymers 294:119784 (2022).
10.1016/j.carbpol.2022.119784Zhuang, B. J. and Es-haghi, S. S., On the thixotropy of cellulose nanofibril suspensions, Journal of Colloid and Interface Science 679:221 (2025).
10.1016/j.jcis.2024.10.079Ouyang, L. L., Yao, R., Zhao, Y., and Sun, W., Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells, Biofabrication 8:035020 (2016).
10.1088/1758-5090/8/3/035020Soufivand, A. A., Faber, J., Hinrichsen, J., and Budday, S., Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures, Scientific Reports 13:11253 (2023).
10.1038/s41598-023-48711-338071354PMC10710406Markstedt, K., Mantas, A., Tournier, I., Avila, H. M., Hägg, D., and Gatenholm, P., 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications, Biomacromolecules 16:1489 (2015).
10.1021/acs.biomac.5b00188Markstedt, K., Escalante, A., Toriz, G., and Gatenholm, P., Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing, ACS Applied Materials & Interfaces 9:40878 (2017).
10.1021/acsami.7b13400Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., and Lewis, J. A., Biomimetic 4D printing, Nature Materials 15:413 (2016).
10.1038/nmat4544Bhattacharjee, T., Zehnder, S. M., Rowe, K. G., Jain, S., Nixon, R. M., Sawyer, W. G., and Angelini, T. E., Writing in the granular gel medium, Science Advances 1:e1500655 (2015).
10.1126/sciadv.150065526601274PMC4643780Shin, S. and Hyun, J., Matrix-Assisted Three-dimensional printing of cellulose nanofibers for paper microfluidics, ACS Applied Materials & Interfaces 9:26438 (2017).
10.1021/acsami.7b07609Cheng, F., Cao, X., Li, H. B., Liu, T. T., Xie, X., Huang, D., Maharjan, S., Bei, H. P., Gómez, A., Li, J., Zhan, H. Q., Shen, H. K., Liu, S. W., He, J. M., and Zhang, Y. S., Generation of cost-effective paper-based tissue models through matrix-assisted sacrificial 3D printing, Nano Letters 19:3603 (2019).
10.1021/acs.nanolett.9b0058331010289PMC6820351Kumar, S., Hofmann, M., Steinmann, B., Foster, E. J., and Weder, C., Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals, ACS Applied Materials & Interfaces 4:5399 (2012).
10.1021/am301321vLevato, R., Dudaryeva, O., Garciamendez-Mijares, C. E., Kirkpatrick, B. E., Rizzo, R., Schimelman, J., Anseth, K. S., Chen, S. C., Zenobi-Wong, M., and Zhang, Y. S., Light-based vat-polymerization bioprinting, Nature Reviews Methods Primers 4:47 (2024).
10.1038/s43586-024-00331-5- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 57
- No :4
- Pages :19-31
- Received Date : 2025-07-15
- Revised Date : 2025-08-17
- Accepted Date : 2025-08-17
- DOI :https://doi.org/10.7584/JKTAPPI.2025.8.57.4.19


Journal of Korea TAPPI






