All Issue

2025 Vol.57, Issue 4 Preview Page

Review

30 August 2025. pp. 19-31
Abstract
References
1

Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers 2:728 (2010).

10.3390/polym2040728
2

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Cellulose nanomaterials review: Structure, properties and nanocomposites, Chemical Society Reviews 40:3941 (2011).

10.1039/c0cs00108b
3

Nechyporchuk, O., Belgacem, M. N., and Pignon, F., Current progress in rheology of cellulose nanofibril suspensions, Biomacromolecules 17:2311 (2016).

10.1021/acs.biomac.6b00668
4

Habibi, Y., Lucia, L. A., and Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chemical Reviews 110:3479 (2010).

10.1021/cr900339w
5

Radeke, C., Pons, R., Mihajlovic, M., Knudsen, J. R., Butdayev, S., Kempen, P. J., Segeritz, C. P., Andresen, T. L., Pehmoller, C. K., Jensen, T. E., and Lind, J. U., Transparent and cell-guiding cellulose nanofiber 3D printing bioinks, ACS Applied Materials & Interfaces 15:2564 (2023).

10.1021/acsami.2c16126
6

Wang, Q. Q., Sun, J. Z., Yao, Q., Ji, C. C., Liu, J., and Zhu, Q. Q., 3D printing with cellulose materials, Cellulose 25:4275 (2018).

10.1007/s10570-018-1888-y
7

Li, V. C. F., Mulyadi, A., Dunn, C. K., Deng, Y. L., and Qi, H. J., Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties, ACS Sustainable Chemistry & Engineering 6:2011 (2018).

10.1021/acssuschemeng.7b03439
8

Wang, X. J., Wang, Q. B., and Xu, C. L., Nanocellulose-based inks for 3D bioprinting: Key aspects in research development and challenging perspectives in applications—A Mini Review, Bioengineering 7:40 (2020).

10.3390/bioengineering702004032365578PMC7355978
9

Ajdary, R., Huan, S. Q., Ezazi, N. Z., Xiang, W. C., Grande, R., Santos, H. A., and Rojas, O. J., Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds, Biomacromolecules 20:2770 (2019).

10.1021/acs.biomac.9b0052731117356PMC6620719
10

Guvendiren, M., Molde, J., Soares, R. M. D., and Kohn, J., Designing biomaterials for 3D printing, ACS Biomaterials Science & Engineering 2:1679 (2016).

10.1021/acsbiomaterials.6b0012128025653PMC5181796
11

Truby, R. L. and Lewis, J. A., Printing soft matter in three dimensions, Nature 540:371 (2016).

10.1038/nature21003
12

Hull, S. M., Brunel, L. G., and Heilshorn, S. C., 3D bioprinting of cell-laden hydrogels for improved biological functionality, Advanced Materials 34:2103691 (2022).

10.1002/adma.20210369134672027PMC8988886
13

Panda, B., Unluer, C., and Tan, M. J., Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing, Composites Part B: Engineering 176:107290 (2019).

10.1016/j.compositesb.2019.107290
14

Maldonado-Rosas, R., Tejada-Ortigoza, V., Cuan-Urquizo, E., Mendoza-Cachú, D., Morales-de La Peña, M., Alvarado-Orozco, J. M., and Campanella, O. H., Evaluation of rheology and printability of 3D printing nutritious food with complex formulations, Additive Manufacturing 58:103030 (2022).

10.1016/j.addma.2022.103030
15

Shin, S. and Hyun, J., Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing, Carbohydrate Polymers 263:117976 (2021).

10.1016/j.carbpol.2021.117976
16

Zhou, G. Q., Li, M. C., Wang, F. M., Liu, C. Z., and Mei, C. T., 3D printing of cellulose nanofiber monoliths for thermal insulation and energy storage applications, Additive Manufacturing 59:103124 (2022).

10.1016/j.addma.2022.103124
17

Wang, Q. B., Backman, O., Nuopponen, M., Xu, C. L., and Wang, X. J., Rheological and printability assessments on biomaterial inks of nanocellulose/photo-crosslinkable biopolymer in light-aided 3D printing, Frontiers in Chemical Engineering 3:723429 (2021).

10.3389/fceng.2021.723429
18

Shin, S., Kwak, H., and Hyun, J., Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing, Carbohydrate Polymers 225:115235 (2019).

10.1016/j.carbpol.2019.115235
19

Li, Y. Y., Wang, B., Ma, M. G., and Wang, B., Review of recent development on preparation, properties, and applications of cellulose-based functional materials, International Journal of Polymer Science 2018:8973643 (2018).

10.1155/2018/8973643
20

Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3:71 (2011).

10.1039/C0NR00583E
21

Jiang, F. and Hsieh, Y. L., Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers 95:32 (2013).

10.1016/j.carbpol.2013.02.022
22

Liu, S. S., Low, Z. X., Xie, Z. L., and Wang, H. T., TEMPO-oxidized cellulose nanofibers: A renewable nanomaterial for environmental and energy applications, Advanced Materials Technologies 6:2001180 (2021).

10.1002/admt.202001180
23

Kaffashsaie, E., Yousefi, H., Nishino, T., Matsumoto, T., Mashkour, M., Madhoushi, M., and Kawaguchi, H., Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers, Carbohydrate Polymers 262:117938 (2021).

10.1016/j.carbpol.2021.117938
24

Mazega, A., Signori-Iamin, G., Aguado, R. J., Tarrés, Q., Ramos, L. P., and Delgado-Aguilar, M., Enzymatic pretreatment for cellulose nanofiber production: Understanding morphological changes and predicting reducing sugar concentration, International Journal of Biological Macromolecules 253:127054 (2023).

10.1016/j.ijbiomac.2023.127054
25

Rossi, B. R., Pellegrini, V. O. A., Cortez, A. A., Chiromito, E. M. S., Carvalho, A. J. F., Pinto, L. O., Rezende, C. A., Mastelaro, V. R., and Polikarpov, I., Cellulose nanofibers production using a set of recombinant enzymes, Carbohydrate Polymers 256:117510 (2021).

10.1016/j.carbpol.2020.117510
26

Nie, S. X., Zhang, K., Lin, X. J., Zhang, C. Y., Yan, D. P., Liang, H. M., and Wang, S. F., Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils, Carbohydrate Polymers 181:1136 (2018).

10.1016/j.carbpol.2017.11.020
27

Liu, X. Y., Jiang, Y., Qin, C. R., Yang, S., Song, X. P., Wang, S. F., and Li, K. C., Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics, Cellulose 25:7065 (2018).

10.1007/s10570-018-2071-1
28

Liu, X. Y., Jiang, Y., Song, X. P., Qin, C. R., Wang, S. F., and Li, K. C., A bio-mechanical process for cellulose nanofiber production - Towards a greener and energy conservation solution, Carbohydrate Polymers 208:191 (2019).

10.1016/j.carbpol.2018.12.071
29

Zhang, C. H., Wu, M., Yang, S., Song, X. P., and Xu, Y., Combined mechanical grinding and enzyme post-treatment leading to increased yield and size uniformity of cellulose nanofibrils, Cellulose 27:7447 (2020).

10.1007/s10570-020-03335-y
30

Huan, S. Q., Ajdary, R., Bai, L., Klar, V., and Rojas, O. J., Low solids emulsion gels based on nanocellulose for 3D-printing, Biomacromolecules 20:635 (2019).

10.1021/acs.biomac.8b01224
31

Palaganas, N. B., Mangadlao, J. D., de Leon, A. C., Palaganas, J. O., Pangilinan, K. D., Lee, Y. J., and Advincula, R. C., 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography, ACS Applied Materials & Interfaces 9:34314 (2017).

10.1021/acsami.7b09223
32

Shin, S., Park, S., Park, M., Jeong, E., Na, K., Youn, H. J., and Hyun, J., Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives, Bioresources 12:2941 (2017).

10.15376/biores.12.2.2941-2954
33

Yuan, R., Wu, K., and Fu, Q., 3D printing of all-regenerated cellulose material with truly 3D configuration: The critical role of cellulose microfiber, Carbohydrate Polymers 294:119784 (2022).

10.1016/j.carbpol.2022.119784
34

Zhuang, B. J. and Es-haghi, S. S., On the thixotropy of cellulose nanofibril suspensions, Journal of Colloid and Interface Science 679:221 (2025).

10.1016/j.jcis.2024.10.079
35

Ouyang, L. L., Yao, R., Zhao, Y., and Sun, W., Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells, Biofabrication 8:035020 (2016).

10.1088/1758-5090/8/3/035020
36

Soufivand, A. A., Faber, J., Hinrichsen, J., and Budday, S., Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures, Scientific Reports 13:11253 (2023).

10.1038/s41598-023-48711-338071354PMC10710406
37

Markstedt, K., Mantas, A., Tournier, I., Avila, H. M., Hägg, D., and Gatenholm, P., 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications, Biomacromolecules 16:1489 (2015).

10.1021/acs.biomac.5b00188
38

Markstedt, K., Escalante, A., Toriz, G., and Gatenholm, P., Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing, ACS Applied Materials & Interfaces 9:40878 (2017).

10.1021/acsami.7b13400
39

Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., and Lewis, J. A., Biomimetic 4D printing, Nature Materials 15:413 (2016).

10.1038/nmat4544
40

Bhattacharjee, T., Zehnder, S. M., Rowe, K. G., Jain, S., Nixon, R. M., Sawyer, W. G., and Angelini, T. E., Writing in the granular gel medium, Science Advances 1:e1500655 (2015).

10.1126/sciadv.150065526601274PMC4643780
41

Shin, S. and Hyun, J., Matrix-Assisted Three-dimensional printing of cellulose nanofibers for paper microfluidics, ACS Applied Materials & Interfaces 9:26438 (2017).

10.1021/acsami.7b07609
42

Cheng, F., Cao, X., Li, H. B., Liu, T. T., Xie, X., Huang, D., Maharjan, S., Bei, H. P., Gómez, A., Li, J., Zhan, H. Q., Shen, H. K., Liu, S. W., He, J. M., and Zhang, Y. S., Generation of cost-effective paper-based tissue models through matrix-assisted sacrificial 3D printing, Nano Letters 19:3603 (2019).

10.1021/acs.nanolett.9b0058331010289PMC6820351
43

Kumar, S., Hofmann, M., Steinmann, B., Foster, E. J., and Weder, C., Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals, ACS Applied Materials & Interfaces 4:5399 (2012).

10.1021/am301321v
44

Levato, R., Dudaryeva, O., Garciamendez-Mijares, C. E., Kirkpatrick, B. E., Rizzo, R., Schimelman, J., Anseth, K. S., Chen, S. C., Zenobi-Wong, M., and Zhang, Y. S., Light-based vat-polymerization bioprinting, Nature Reviews Methods Primers 4:47 (2024).

10.1038/s43586-024-00331-5
45

Murphy, C. A., Lim, K. S., and Woodfield, T. B. F., Next evolution in organ-scale biofabrication: Bioresin design for rapid high-resolution vat polymerization, Advanced Materials 34:2107759 (2022).

10.1002/adma.202107759
46

Shin, S., Kwak, H., and Hyun, J., Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink, ACS Applied Materials & Interfaces 10:23573 (2018).

10.1021/acsami.8b05963
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 57
  • No :4
  • Pages :19-31
  • Received Date : 2025-07-15
  • Revised Date : 2025-08-17
  • Accepted Date : 2025-08-17