All Issue

2024 Vol.56, Issue 5 Preview Page

Research Article

30 October 2024. pp. 30-37
Abstract
References
1

Illikainen, M., Mechanisms of thermomechanical pulp refining, University of Oulu (2008).

2

Gavrilescu, D., Pulping fundamentals and processing, Pulp Production and Processing: High-Tech Applications, De Gruyter, p. 19 (2020).

10.1515/9783110658842-002
3

McDonald, D., Miles, K., and Amiri, R., The nature of the mechanical pulping process, Pulp Pap. Canada, 105(8):27-32 (2004).

4

Li, B., Li, H., Zha, Q., Bandekar, R., Alsaggaf, A., and Ni, Y., Effects of wood quality and refining process on TMP pulp and paper quality, BioResources, 6(3) (2011).

10.15376/biores.6.3.3569-3584
5

Dundar, E., Ding, F., and Laperrière, L., Effects of wood chip characteristics on refining energy consumption, IMPC Proceedings (2007).

6

Suchsland, O. and Woodson, G. E., Fiberboard manufacturing practices in the United States, US Department of Agriculture, Forest Service, No. 640 (1987).

7

Youngquist, J. A., Wood-based composites and panel products, Wood handbook: wood as an engineering material, General Technical Report FPL-GTR-113, USDA Forest Service, Forest Products Laboratory, pp. 10.1-10.31 (1999).

8

Migneault, S., Koubaa, A., Nadji, H., Riedl, B., Zhang, S. T., and Deng, J., Medium-density fiberboard produced using pulp and paper sludge from different pulping processes, Wood and Fiber Science, pp. 292-303 (2010).

9

Migneault, S., Koubaa, A., Nadji, H., Riedl, B., Zhang, S. T., and Deng, J., Medium-density fiberboard produced using pulp and paper sludge from different pulping processes, Wood and Fiber Science, pp. 292-303 (2010).

10

Gorski, D., Hill, J., Engstrand, P., and Johansson, L., Reduction of energy consumption in TMP refining through mechanical pre-treatment of wood chips, Nordic Pulp & Paper Research Journal, 25(2):156-161 (2010).

10.3183/npprj-2010-25-02-p156-161
11

Talebjedi, B., Laukkanen, T., Holmberg, H., Vakkilainen, E., and Syri, S., Energy efficiency analysis of the refining unit in thermo-mechanical pulp mill, Energies, 14(6):1664 (2021).

10.3390/en14061664
12

Höglund, H., Mechanical pulping, Pulping Chemistry and Technology, Vol. 2, pp. 57 (2009).

10.1515/9783110213423.57
13

Vololonirina, O., Coutand, M., and Perrin, B., Characterization of hygrothermal properties of wood-based products - Impact of moisture content and temperature, Construction and Building Materials, 63:223-233 (2014).

10.1016/j.conbuildmat.2014.04.014
14

Suchsland, O. and Woodson, G. E., Fiberboard manufacturing practices in the United States, USDA Forest Service, General technical report No. 640 (1987).

15

Irle, M. and Barbu, M.C., Wood-based panel technology, in Wood-based panel technology, Brunel University Press, pp. 1-94 (2010).

16

ISO 287, Paper and board - Determination of moisture content of a lot - Oven-drying method. International Organization for Standardization.

17

ISO 16065-1, Pulps - Determination of fibre length by automated optical analysis - Part 1: General method. International Organization for Standardization.

18

TAPPI T 203, Alpha-, beta- and gamma-cellulose in pulp. Technical Association of the Pulp and Paper Industry.

19

TAPPI T 222, Acid-insoluble lignin in wood and pulp. Technical Association of the Pulp and Paper Industry.

20

TAPPI T 204, Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry.

21

TAPPI T 211, Ash in wood, pulp, paper and paperboard: Combustion at 525°C. Technical Association of the Pulp and Paper Industry.

22

Lönnberg, B., Development of wood grinding. 6. Significance of the frictional coefficient in grinding of spruce wood, Cellulose Chemistry & Technology, 58 (2024).

10.35812/CelluloseChemTechnol.2024.58.40
23

Fischer, W. J., Mayr, M., Spirk, S., Reishofer, D., Jagiello, L. A., Schmiedt, R., ... & Bauer, W., Pulp fines-characterization, sheet formation, and comparison to microfibrillated cellulose, Polymers, 9(8):366 (2017).

10.3390/polym9080366
24

ISO 17827-1, Solid Biofuels - Determination of Particle Size Distribution for Uncompressed Fuels - Part: Oscillating Screen Method Using Sieves with Apertures of 3.15 mm and Above, ISO, Geneva, Switzerland (2016).

25

Rahman, A., Marufuzzaman, M., Street, J., Wooten, J., Gude, V. G., Buchanan, R., and Wang, H., A comprehensive review on wood chip moisture content assessment and prediction, Renewable and Sustainable Energy Reviews, 189:113843 (2024).

10.1016/j.rser.2023.113843
26

Colin, B., Dirion, J. L., Arlabosse, P., and Salvador, S., Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips, Fuel, 197:232-239 (2017).

10.1016/j.fuel.2017.02.028
27

Van der Merwe, J. P., Ackerman, P., Pulkki, R., and Längin, D., The impact of log moisture content on chip size distribution when processing Eucalyptus pulpwood, Croatian Journal of Forest Engineering, 37(2):297-307 (2016).

28

Hofmann, N., and Borchert, H., Influence of fuel quality and storage conditions on oxygen consumption in two different wood chip assortments - Determination of the storage-stable moisture content, Fuel, 309:122196 (2022).

10.1016/j.fuel.2021.122196
29

Pollex, A., Lesche, S., Kuptz, D., Zeng, T., Kuffer, G., Mühlenberg, J., and Lenz, V., Influence of screening and drying on low‐quality wood chips for application in small‐scale gasification plants, Chemical Engineering & Technology, 43(8):1493-1505 (2020).

10.1002/ceat.202000034
30

Pedišius, N., Praspaliauskas, M., Pedišius, J., and Dzenajavičienė, E. F., Analysis of Wood Chip Characteristics for Energy Production in Lithuania, Energies, 14(13):3931 (2021).

10.3390/en14133931
31

Karinkanta, P., Ämmälä, A., Illikainen, M., and Niinimäki, J., Fine grinding of wood - Overview from wood breakage to applications, Biomass and Bioenergy, 113:31-44 (2018).

10.1016/j.biombioe.2018.03.007
32

Solala, I., Antikainen, T., Reza, M., Johansson, L. S., Hughes, M., and Vuorinen, T., Spruce fiber properties after high-temperature thermomechanical pulping (HT-TMP), Holzforschung, 68(2):195-201 (2014).

10.1515/hf-2013-0083
33

Laukala, T., Ovaska, S. S., Tanninen, P., Pesonen, A., Jordan, J., and Backfolk, K., Influence of pulp type on the three-dimensional thermomechanical convertibility of paperboard, Cellulose, 26:3455-3471 (2019).

10.1007/s10570-019-02294-3
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :5
  • Pages :30-37
  • Received Date : 2024-09-23
  • Revised Date : 2024-10-08
  • Accepted Date : 2024-10-08