Research Article
Abstract
References
Information
Hwang, S. W., Park, G. Y., Kim, J. H., and Jeong, M. J., Predictive modeling of traditional korean paper characteristics using machine learning approaches (part 1): discriminating manufacturing origins with artificial neural networks and infrared spectroscopy, Journal of Korea TAPPI 55(4):57-69 (2023).
10.7584/JKTAPPI.2023.8.55.4.57
Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K., KNN model-based approach in classification, In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, Proceedings pp. 986-996, Springer Berlin Heidelberg (2003).
10.1007/978-3-540-39964-3_62
Piras, P., Sheridan, R., Sherer, E. C., Schafer, W., Welch, C. J., and Roussel, C., Modeling and predicting chiral stationary phase enantioselectivity: An efficient random forest classifier using an optimally balanced training dataset and an aggregation strategy, Journal of separation science 41(6):1365-1375 (2018).
10.1002/jssc.20170133429383846
Horikawa, Y., Hirano, S., Mihashi, A., Kobayashi, Y., Zhai, S. and Sugiyama, J., Pre- diction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of cryptomeria japonica, Applied Biochemistry and Biotechnology 188:1066-1076 (2019).
10.1007/s12010-019-02965-830783948
- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 55
- No :5
- Pages :61-74
- Received Date : 2023-09-20
- Revised Date : 2023-10-22
- Accepted Date : 2023-10-24
- DOI :https://doi.org/10.7584/JKTAPPI.2023.10.55.5.61