All Issue

2022 Vol.54, Issue 4 Preview Page
30 August 2022. pp. 75-84
Abstract
References

Literature Cited

1

GESAMP, Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment, Kershaw, P. J. and Rochman, C. M. (ed.), IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, GESAMP Reports and Studies No. 93, pp. 17-19 (2016).

2

Leslie, H. A., Plastic in Cosmetics; Are we polluting the environment through our personal care?, Report from United Nationals Environmental Programme (UNEP) (2015).

3

Miller, K., Santillo, D. and Johnston, P., Plastics in Seafood – Full technical review of the occurrence, fate and effects of microplastics in fish and shellfish, Greenpeace Research Laboratories Technical Report (2016).

4

Moon, S. M., Jeon, S. H., Eom, T. and Shim, B. S., Recent research trends in eco-friendly materials for solving environmental microplastic problems, Prospectives of Industrial Chemistry 22(2):25-43 (2019).

5

Gericke, M., Trygg, J. and Fardim, P., Functional cellulose beads: Preparation, characterization, and applications, Chemical Reviews 113:4812-4836 (2013).

10.1021/cr300242j
6

Sen, S., Martin, J. D. and Argyropoulos, D. S., Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates, ACS Sustainable Chemistry & Engineering 1(8):858-870 (2013).

10.1021/sc400085a
7

Olsson, C. and Westman, G., Direct dissolution of cellulose: Background, means and applications, In Cellouse – Fundamental Aspects, Ch. 6, van de Ven, T. and Godbout, L., (ed.), InTech, Rijeka, Croatia pp.143-178 (2013).

10.5772/52144
8

Kostag, M., Gericke, M., Heinze, T. and El Seoud, O. A., Twentty-five years of cellulose chemistry: Innovations in the dissolution of the biopolymer and its transformation into esters and ethers, Cellulose 26:139-184 (2019).

10.1007/s10570-018-2198-0
9

El Seoud, O. A., Kostag, M., Jedvert, K. and Maletk, N. I., Cellulose in ionic liquids and alkaline solutions: Advances in the mechanisms of biopolymer dissolution and regeneration, Polymers 11:1919 (2019).

10.3390/polym11121917
10

Yang, X., Wang, Q. and Yu, H., Dissolution and regeneration of biopolymers in ionic liquids, Russian Chemical Bulletin 63(3):555-559 (2014).

10.1007/s11172-014-0471-4
11

Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y. and Wu, G., Dissolution of cellulose with ionic liquids and its application: A mini-review, Green Chemistry 8(4):325-327 (2006).

10.1039/b601395c
12

Rinaldi, R., Instantaneous dissolution of cellulose in organic electrolyte solutions, Chemical Communications 47:511-513 (2011).

10.1039/C0CC02421J
13

Lin, L., Yamaguchi, H. and Suzuki, A., Dissolution of cellulose in the mixed solvent of [bmim]Cl–DMAc and its application, RSC Advances 3(34):14379-14384 (2013).

10.1039/c3ra41299g
14

Suzuki, T., Kono, J., Shimomura, K. and Minami, H., Preparation of cellulose particles using ionic liquid, Journal of Colloid and Interface Science 418:126-131 (2014).

10.1016/j.jcis.2013.12.014
15

Lee, S.-G., Oh, S.-Y. and Cho, B.-U., Dissolution of HwBKP with [Bmim]Cl-DMF solvent and production of cellulose beads: Effect of mixing ratio of solvents, J. of Korea TAPPI 54(2):27-36 (2022).

10.7584/JKTAPPI.2022.04.54.2.27
16

Segal, L., Creely, J. J., Martin, A. E. Jr. and Conrad, C. M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal 29(10):786-794 (1959).

10.1177/004051755902901003
17

Tseng, Y.-H., Lee, Y.-Y. and Chen, S.-H., Synthesis of quaternary ammonium room-temperature ionic liquids and their application in the dissolution of cellulose, Applied Sciences 9:1750 (2019).

10.3390/app9091750
18

Miller, A. F. and Donald, A. M., Surface and interfacial tension of cellulose suspensions, Langmuir 18(26):10155-10162 (2002).

10.1021/la0258300
19

Kim, Y., An, H.-J. and Cho, B.-U., Production of cellulose beads with TEAH-urea solvent and dropping technique: Effect of concentration of cellulose solution, J. of Korea TAPPI 53(1):83-89 (2021).

10.7584/JKTAPPI.2021.02.53.1.83
20

Kim, Y., An, H.-J. and Cho, B.-U., Production of cellulose beads with TEAH-urea solvent and dropping technique: Effect of inner diameter of syringe needle, J. of Korea TAPPI 52(6):149-156 (2020).

10.7584/JKTAPPI.2020.12.52.6.149
21

Davarci, F., Turan, D., Ozcelik, B. and Poncelet, D., The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique, Food Hydrocolloids 62:119-127 (2017).

10.1016/j.foodhyd.2016.06.029
22

Lee, B.-B., Ravindra, P. and Chan, E.-S., Size and shape of calcium alginate beads produced by extrusion dripping, Chemical Engineering & Technology 36(10):1627-1642 (2013).

10.1002/ceat.201300230
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 54
  • No :4
  • Pages :75-84
  • Received Date : 2022-07-08
  • Revised Date : 2022-08-05
  • Accepted Date : 2022-08-09