All Issue

2024 Vol.56, Issue 5 Preview Page

Research Article

30 October 2024. pp. 107-113
Abstract
References
1

Geyer, R., Jambeck, J. R., and Law, K. L., Production, use, and fate of all plastics ever made, Science Advances 3(7):e1700782 (2017).

10.1126/sciadv.1700782
2

An, D. and Kim, J., Proposing policy for prevention of marine pollution from microplastics, J. of Environmental Policy and Admistration 26(3):77-102 (2018).

10.15301/jepa.2018.26.3.77
3

MacLeod, M., Arp, H. P. H., Tekman, M. B., and Jahnke, A., The global threat from plastic pollution, Science 373(6550):61-65 (2021).

10.1126/science.abg5433
4

Thushari, G. G. N. and Senevirathna, J. D. M., Plastic pollution in the marine environment, Heliyon 6:e04709 (2020).

10.1016/j.heliyon.2020.e04709
5

Li, P., Wang, X., Su, M., Zou, X., Duan, L., and Zhang, H., Characteristics of plastic pollution in the environment: A review, Bulletin of Environmental Contamination and Toxicology 107:577-584 (2021).

10.1007/s00128-020-02820-1
6

Sutkar, P. R., Gadewar, R. D., and Dhulap, V. P., Recent trends in degradation of microplastics in the environment: A state-of-the-art review, J. of Hazardous Materials Advances 11:100343 (2023).

10.1016/j.hazadv.2023.100343
7

Leslie, H. A., van Velzen, M. J. M., Brandsma, S., Vethaak, A. D., Garcia-Vallejo, J. J., and Lamoree, M. H., Discovery and quantification of plastic particle pollution in human blood, Environment International 163:107199 (2022).

10.1016/j.envint.2022.107199
8

Jenner, L. C., Rotchell, J. M., Bennett, R. T., Cowen, M., Tentzeris, V., and Sadofsky, L. R., Detection of microplastics in human lung tissue using uFTIR spectroscopy, Science of the Total Environment 831:154907 (2022).

10.1016/j.scitotenv.2022.154907
9

Kim, H., Zaheer, J., Choi, E. -J., and Kim, J. S., Enhanced ASGR2 by microplastic exposure leads to resistance to therapy in gastric cancer, Theranostics 12(7):3217-3236 (2022).

10.7150/thno.73226
10

Jeong, B., Baek, J. Y., Koo, J., Park, S., Ryu, Y. -K., Kim, K. -S., Zhang, S., Chung, C., Dogan, R., Choi, H. -S., Um, D., Him, T. -K., Lee, W. S., Jeong, J., Shin, W. -H., Lee, J. -R., Kim, N. -S., and Lee, D. Y., Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny, J. of Hazardous Materials 426:127815 (2022).

10.1016/j.jhazmat.2021.127815
11

Shen, L., Worrell, E., and Patel, M., Present and future development in plastics from biomass, Biofuels, Bioproducts and Biorefining 4:25-40 (2010).

10.1002/bbb.189
12

Mori, R., Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review, RSC Sustainability 1:179-212 (2023)

10.1039/D2SU00014H
13

Gericke, M., Trygg, J., and Fardim, P., Functional cellulose beads: Preparation, characterization, and application, Chemical Reviews 113:4812-4836 (2013).

10.1021/cr300242j
14

Klemm, D., Heublein, B., Fink, H. -P. and Bohn, A., Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie Internatinoal Edition 44(22):3358-3393 (2005).

10.1002/anie.200460587
15

Moon, S. M., Jeon, S. H., Eom, T., and Shim, B. S., Recent research trends in eco-friendly materials for solving environmental microplastic problems, KIC News 22(2):25-43 (2019).

16

Kim, Y., An, H. -J., and Cho, B. -U., Production of cellulose beads with TEAH-urea solvent and dropping technique: Effect of inner diameter of syringe needle, J. of Korea TAPPI 52(6):149-156 (2020).

10.7584/JKTAPPI.2020.12.52.6.149
17

Kim, Y., An, H. -J., and Cho, B. -U., Production of cellulose beads with TEAH-urea solvent and dropping technique: Effect of concentration of cellulose solution, J. of Korea TAPPI 53(1):83-89 (2021).

10.7584/JKTAPPI.2021.02.53.1.83
18

Lee, S. -G., Oh, S. -Y., and Cho, B. -U. Dissolution of HwBKP with BmimCl-DMF solvent and production of cellulose beads: effect of the cellulose concentration and syringe needle diameter. J. of Korea TAPPI 54(4), 75-84, (2022).

10.7584/JKTAPPI.2022.08.54.4.75
19

Xu, F., Kim, Y. -L., Oh, S. -Y., and Cho, B. -U., Facile synthesis of porous cellulose aerogel beads with tunable core-shell microstructures and physical properties, J. of Industrial and Engineering Chemistry 126:160-170 (2023).

10.1016/j.jiec.2023.06.006
20

Oh, S. -Y, Xu, F., and Cho, B. -U., Effect of mechanical-chemical pretreatment at room temperature on properties of cellulose and cellulose solution, J. of Korea TAPPI 56(2):12-21 (2024).

10.7584/JKTAPPI.2024.4.56.2.12
21

Sirviö, J. A. and Heiskanen, J. P., Room-temperature dissolution and chemical modification of cellulose in aqueous tetraethylammonium hydroxide-carbamide solutions, Cellulose 27(4):1933-1950 (2020).

10.1007/s10570-019-02907-x
22

KS M ISO 5351, Pulps - Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution, Korean Standards Association (2020).

23

Trygg, J., Trivedi, P., and Fardim, P., Controlled depolymerisation of cellulose to a given degree of polymerisation, Cellulose Chemistry and Technology 50(5-6):557-567 (2016).

24

Segal, L., Creely, J. J., Martin Jr, A. E., and Conrad, C. M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal 29(10):786-794 (1959).

10.1177/004051755902901003
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :5
  • Pages :107-113
  • Received Date : 2024-10-04
  • Revised Date : 2024-10-12
  • Accepted Date : 2024-10-16