Research Article
Abstract
References
Information
Costa, L. R., Tonoli, G. H. D., Milagres, F. R., and Hein, P. R. G., Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near-infrared spectroscopic data, Carbohydrate polymers 224:115186 (2019).
10.1016/j.carbpol.2019.11518631472836
Hwang, S. W., Chung, H., Lee, T., Kim, J., Kim, Y., Kim, J. C., Kwak, H. W., Choi, I. G., and Yeo, H., Feature importance measures from random forest regressor using near-infrared spectra for predicting carbonization characteristics of kraft lignin-derived hydrochar, Journal of Wood Science 69(1):1-12 (2023).
10.1186/s10086-022-02073-y
Lee, S. D., Lohumi, S., Cho, B. K., Kim, M. S., and Lee, S. H., Development of nondestructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression, Journal of the Korean Society for Nondestructive Testing 34(4):283-289 (2014).
10.7779/JKSNT.2014.34.4.283
Hwang, S. W., Park, G. Y., Kim, J. H., and Jeong, M. J., Predictive modeling of traditional Korean paper characteristics using machine learning approaches (part 1): discriminating manufacturing origins with artificial neural networks and infrared spectroscopy, Journal of Korea TAPPI 55(4):57-69 (2023).
10.7584/JKTAPPI.2023.8.55.4.57
- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 55
- No :5
- Pages :83-95
- Received Date : 2023-09-23
- Revised Date : 2023-10-24
- Accepted Date : 2023-10-26
-
A Corrigendum to this article was published on 30 December 2023.This article has been updated.
- DOI :https://doi.org/10.7584/JKTAPPI.2023.10.55.5.83