All Issue

2025 Vol.57, Issue 3 Preview Page

Original Paper

30 June 2025. pp. 65-76
Abstract
References
1

Liu, Y., Benohoud, M., Yamdeu, J. H. G., Gong, Y. Y., and Orfila, C., Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus, Food Chemistry: X 12:100144 (2021).

10.1016/j.fochx.2021.10014434761200PMC8566929
2

Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., and Salvador, A., Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins, Food Research International 49(1):462-468 (2012).

10.1016/j.foodres.2012.07.040
3

Suri, S., Singh, A., and Nema, P. K., Current applications of citrus fruit processing waste: A scientific outlook, Applied Food Research 2(1):100050 (2022).

10.1016/j.afres.2022.100050
4

Lee, Y. J., Kim, S. H., Shin, M. S., Kim, J. E., and Sung, Y. J., A study on the post-treatments of citrus pomace-based soil covering materials for improving functional properties, Journal of Korea TAPPI 56(2):41-49 (2024).

10.7584/JKTAPPI.2024.4.56.2.41
5

Chavan, P., Singh, A. K., and Kaur, G., Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review, Journal of Food Process Engineering 41(8):e12895 (2018).

10.1111/jfpe.12895
6

Wang, Y. C., Chuang, Y. C., and Hsu, H. W., The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan, Food Chemistry 106(1):277-284 (2008).

10.1016/j.foodchem.2007.05.086
7

Venzon, S. S., Canteri, M. H. G., Granato, D., Junior, B. D., Maciel, G. M., Stafussa, A. P., and Haminiuk, C. W. I., Physicochemical properties of modified citrus pectins extracted from orange pomace, Journal of Food Science and Technology 52:4102-4112 (2015).

10.1007/s13197-014-1419-226139875PMC4486528
8

Sudha, M. L., Baskaran, V., and Leelavathi, K., Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making, Food Chemistry 104(2):686-692 (2007).

10.1016/j.foodchem.2006.12.016
9

Joshi, V. K. and Sandhu, D. K., Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace, Bioresource Technology 56(2-3):251-255 (1996).

10.1016/0960-8524(96)00040-5
10

Li, B. B., Smith, B., and Hossain, M. M., Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method, Separation and Purification Technology 48(2):189-196 (2006).

10.1016/j.seppur.2005.07.019
11

Edwards, M. C. and Doran-Peterson, J., Pectin-rich biomass as feedstock for fuel ethanol production, Applied Microbiology and Biotechnology 95:565-575 (2012).

10.1007/s00253-012-4173-222695801PMC3396330
12

Kim, S. S., Lee, J. A., Kim, J. Y., Lee, N. H., and Hyun, C. G., Citrus peel wastes as functional materials for cosmeceuticals, Journal of Applied Biological Chemistry 51(1):7-12 (2008).

10.3839/jabc.2008.002
13

Siles, J. A., Vargas, F., Gutiérrez, M. C., Chica, A. F., and Martín, M. A., Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies, Bioresource Technology 211:173-182 (2016).

10.1016/j.biortech.2016.03.05627017127
14

Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., The 'Terra Preta' phenomenon: A model for sustainable agriculture in the humid tropics, Naturwissenschaften 88:37-41 (2001).

10.1007/s00114000019311302125
15

Glaser, B., Lehmann, J., and Zech, W., Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review, Biology and Fertility of Soils 35:219-230 (2002).

10.1007/s00374-002-0466-4
16

Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., and Kumar, S., Recent trends in biochar production methods and its application as a soil health conditioner: A review, SN Applied Sciences 2:1307 (2020).

10.1007/s42452-020-3121-5
17

Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., and Al-Ansari, T., A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield, Renewable and Sustainable Energy Reviews 167:112715 (2022).

10.1016/j.rser.2022.112715
18

Tomczyk, A., Sokołowska, Z., and Boguta, P., Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects, Reviews in Environmental Science and Bio/Technology 19(1):191-215 (2020).

10.1007/s11157-020-09523-3
19

Fowles, M., Black carbon sequestration as an alternative to bioenergy, Biomass and Bioenergy 31(6):426-432 (2007).

10.1016/j.biombioe.2007.01.012
20

Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S., Sustainable biochar to mitigate global climate change, Nature Communications 1(1):56 (2010).

10.1038/ncomms105320975722PMC2964457
21

Blanco-Canqui, H., Biochar and soil physical properties, Soil Science Society of America Journal 81(4):687-711 (2017).

10.2136/sssaj2017.01.0017
22

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S., Using poultry litter biochars as soil amendments, Soil Research 46(5):437-444 (2008).

10.1071/SR08036
23

Warnock, D. D., Lehmann, J., Kuyper, T. W., and Rillig, M. C., Mycorrhizal responses to biochar in soil-concepts and mechanisms, Plant and Soil 300:9-20 (2007).

10.1007/s11104-007-9391-5
24

Major, J., Rondon, M., Molina, D., Riha, S. J., and Lehmann, J., Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol, Plant and Soil 333:117-128 (2010).

10.1007/s11104-010-0327-0
25

DeLuca, T. H., MacKenzie, M. D., Gundale, M. J., and Holben, W. E., Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests, Soil Science Society of America Journal 70(2):448-453 (2006).

10.2136/sssaj2005.0096
26

Elias, M., Sanchez, D. L., Saksa, P., Hunt, J., and Remucal, J., Market analysis of coupled biochar and carbon credit production from wildfire fuel reduction projects in the western USA, Biofuels, Bioproducts and Biorefining 18(5):1226-1237 (2024).

10.1002/bbb.2614
27

Fernandez-Lopez, J., Fernández-Ginés, J. M., Aleson-Carbonell, L., Sendra, E., Sayas-Barberá, E., and Pérez-Alvarez, J. A., Application of functional citrus by-products to meat products, Trends in Food Science & Technology 15(3-4):176-185 (2004).

10.1016/j.tifs.2003.08.007
28

He, C. A., Qi, J. R., Liao, J. S., Song, Y. T., and Wu, C. L., Excellent hydration properties and oil holding capacity of citrus fiber: Effects of component variation and microstructure, Food Hydrocolloids 144:108988 (2023).

10.1016/j.foodhyd.2023.108988
29

Kim, S. H., Lee, M. H., and Sung, Y. J., Changes in char properties according to carbonization conditions of urban fallen leaves, Journal of Korea TAPPI 55(4):49-56 (2023).

10.7584/JKTAPPI.2023.8.55.4.49
30

Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86(12-13):1781-1788 (2007).

10.1016/j.fuel.2006.12.013
31

Cagnon, B., Py, X., Guillot, A., Stoeckli, F., and Chambat, G., Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresource Technology 100(1):292-298 (2009).

10.1016/j.biortech.2008.06.00918650083
32

Hussin, F., Aroua, M. K., and Szlachta, M., Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review, Chemosphere 287:132250 (2022).

10.1016/j.chemosphere.2021.13225034547565
33

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., and Usman, A. R., Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes, Bioresource Technology 131:374-379 (2013).

10.1016/j.biortech.2012.12.16523376202
34

Yuan, J. H., Xu, R. K., and Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technology 102(3):3488-3497 (2011).

10.1016/j.biortech.2010.11.01821112777
35

Shetty, R. and Prakash, N. B., Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity, Scientific Reports 10(1):12249 (2020).

10.1038/s41598-020-69262-x32704053PMC7378052
36

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S., Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere 99:19-33 (2014).

10.1016/j.chemosphere.2013.10.07124289982
37

Zhang, X., Zhang, P., Yuan, X., Li, Y., and Han, L., Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar, Bioresource Technology 296:122318 (2020).

10.1016/j.biortech.2019.12231831675650
38

Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., and Khalid, K., Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust, BioResources 11(2):3356-3372 (2016).

10.15376/biores.11.2.3356-3372
39

Mohan, D., Abhishek, K., Patel, M., and Pittman Jr, C. U., Harnessing biochar in contaminated soil for heavy metal immobilization, soil health enhancement, and carbon sequestration, Industrial & Engineering Chemistry Research 63(23):10380-10396 (2024).

10.1021/acs.iecr.4c00082
40

Wang, T., Camps-Arbestain, M., and Hedley, M., Predicting C aromaticity of biochars based on their elemental composition, Organic Geochemistry 62:1-6 (2013).

10.1016/j.orggeochem.2013.06.012
41

Antal, M. J. and Grønli, M., The art, science, and technology of charcoal production, Industrial & Engineering Chemistry Research 42(8):1619-1640 (2003).

10.1021/ie0207919
42

Hilscher, A., Heister, K., Siewert, C., and Knicker, H., Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil, Organic Geochemistry 40(3):332-342 (2009).

10.1016/j.orggeochem.2008.12.004
43

Schimmelpfennig, S. and Glaser, B., One step forward toward characterization: Some important material properties to distinguish biochars, Journal of Environmental Quality 41(4):1001-1013 (2012).

10.2134/jeq2011.014622751042
44

Kaal, J., Schneider, M. P., and Schmidt, M. W., Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study, Biomass and Bioenergy 45:115-129 (2012).

10.1016/j.biombioe.2012.05.021
45

He, M., Xu, Z., Sun, Y., Chan, P. S., Lui, I., and Tsang, D. C., Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar, Bioresource Technology 341:125811 (2021).

10.1016/j.biortech.2021.12581134454231
46

Sohi, S., Loez-Capel, E., Krull, E., and Bol, R., Biochar's roles in soil and climate change: A review of research needs, CSIRO Land and Water Science Report 5(09):1-57 (2009).

47

Uchimiya, M., Chang, S., and Klasson, K. T., Screening biochars for heavy metal retention in soil: Role of oxygen functional groups, Journal of Hazardous Materials 190(1-3):432-441 (2011).

10.1016/j.jhazmat.2011.03.06321489689
48

Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., and Smolders, E., Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study, Scientific Reports 6(1):25127 (2016).

10.1038/srep2512727113269PMC4844975
49

Spokas, K. A., Review of the stability of biochar in soils: Predictability of O:C molar ratios, Carbon Management 1(2):289-303 (2010).

10.4155/cmt.10.32
50

Rutherford, D. W., Wershaw, R. L., Rostad, C. E., and Kelly, C. N., Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars, Biomass and Bioenergy 46:693-701 (2012).

10.1016/j.biombioe.2012.06.026
51

Huang, Y., Li, F., Meng, J., and Chen, W., Lignin content of agro-forestry biomass negatively affects the resultant biochar pH, BioResources 13(3):5153-5163 (2018).

10.15376/biores.13.3.5153-5163
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 57
  • No :3
  • Pages :65-76
  • Received Date : 2025-05-22
  • Revised Date : 2025-06-14
  • Accepted Date : 2025-06-17