Original Paper
Liu, Y., Benohoud, M., Yamdeu, J. H. G., Gong, Y. Y., and Orfila, C., Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus, Food Chemistry: X 12:100144 (2021).
10.1016/j.fochx.2021.10014434761200PMC8566929Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., and Salvador, A., Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins, Food Research International 49(1):462-468 (2012).
10.1016/j.foodres.2012.07.040Suri, S., Singh, A., and Nema, P. K., Current applications of citrus fruit processing waste: A scientific outlook, Applied Food Research 2(1):100050 (2022).
10.1016/j.afres.2022.100050Lee, Y. J., Kim, S. H., Shin, M. S., Kim, J. E., and Sung, Y. J., A study on the post-treatments of citrus pomace-based soil covering materials for improving functional properties, Journal of Korea TAPPI 56(2):41-49 (2024).
10.7584/JKTAPPI.2024.4.56.2.41Chavan, P., Singh, A. K., and Kaur, G., Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review, Journal of Food Process Engineering 41(8):e12895 (2018).
10.1111/jfpe.12895Wang, Y. C., Chuang, Y. C., and Hsu, H. W., The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan, Food Chemistry 106(1):277-284 (2008).
10.1016/j.foodchem.2007.05.086Venzon, S. S., Canteri, M. H. G., Granato, D., Junior, B. D., Maciel, G. M., Stafussa, A. P., and Haminiuk, C. W. I., Physicochemical properties of modified citrus pectins extracted from orange pomace, Journal of Food Science and Technology 52:4102-4112 (2015).
10.1007/s13197-014-1419-226139875PMC4486528Sudha, M. L., Baskaran, V., and Leelavathi, K., Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making, Food Chemistry 104(2):686-692 (2007).
10.1016/j.foodchem.2006.12.016Joshi, V. K. and Sandhu, D. K., Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace, Bioresource Technology 56(2-3):251-255 (1996).
10.1016/0960-8524(96)00040-5Li, B. B., Smith, B., and Hossain, M. M., Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method, Separation and Purification Technology 48(2):189-196 (2006).
10.1016/j.seppur.2005.07.019Edwards, M. C. and Doran-Peterson, J., Pectin-rich biomass as feedstock for fuel ethanol production, Applied Microbiology and Biotechnology 95:565-575 (2012).
10.1007/s00253-012-4173-222695801PMC3396330Kim, S. S., Lee, J. A., Kim, J. Y., Lee, N. H., and Hyun, C. G., Citrus peel wastes as functional materials for cosmeceuticals, Journal of Applied Biological Chemistry 51(1):7-12 (2008).
10.3839/jabc.2008.002Siles, J. A., Vargas, F., Gutiérrez, M. C., Chica, A. F., and Martín, M. A., Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies, Bioresource Technology 211:173-182 (2016).
10.1016/j.biortech.2016.03.05627017127Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., The 'Terra Preta' phenomenon: A model for sustainable agriculture in the humid tropics, Naturwissenschaften 88:37-41 (2001).
10.1007/s00114000019311302125Glaser, B., Lehmann, J., and Zech, W., Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review, Biology and Fertility of Soils 35:219-230 (2002).
10.1007/s00374-002-0466-4Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., and Kumar, S., Recent trends in biochar production methods and its application as a soil health conditioner: A review, SN Applied Sciences 2:1307 (2020).
10.1007/s42452-020-3121-5Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., and Al-Ansari, T., A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield, Renewable and Sustainable Energy Reviews 167:112715 (2022).
10.1016/j.rser.2022.112715Tomczyk, A., Sokołowska, Z., and Boguta, P., Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects, Reviews in Environmental Science and Bio/Technology 19(1):191-215 (2020).
10.1007/s11157-020-09523-3Fowles, M., Black carbon sequestration as an alternative to bioenergy, Biomass and Bioenergy 31(6):426-432 (2007).
10.1016/j.biombioe.2007.01.012Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S., Sustainable biochar to mitigate global climate change, Nature Communications 1(1):56 (2010).
10.1038/ncomms105320975722PMC2964457Blanco-Canqui, H., Biochar and soil physical properties, Soil Science Society of America Journal 81(4):687-711 (2017).
10.2136/sssaj2017.01.0017Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S., Using poultry litter biochars as soil amendments, Soil Research 46(5):437-444 (2008).
10.1071/SR08036Warnock, D. D., Lehmann, J., Kuyper, T. W., and Rillig, M. C., Mycorrhizal responses to biochar in soil-concepts and mechanisms, Plant and Soil 300:9-20 (2007).
10.1007/s11104-007-9391-5Major, J., Rondon, M., Molina, D., Riha, S. J., and Lehmann, J., Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol, Plant and Soil 333:117-128 (2010).
10.1007/s11104-010-0327-0DeLuca, T. H., MacKenzie, M. D., Gundale, M. J., and Holben, W. E., Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests, Soil Science Society of America Journal 70(2):448-453 (2006).
10.2136/sssaj2005.0096Elias, M., Sanchez, D. L., Saksa, P., Hunt, J., and Remucal, J., Market analysis of coupled biochar and carbon credit production from wildfire fuel reduction projects in the western USA, Biofuels, Bioproducts and Biorefining 18(5):1226-1237 (2024).
10.1002/bbb.2614Fernandez-Lopez, J., Fernández-Ginés, J. M., Aleson-Carbonell, L., Sendra, E., Sayas-Barberá, E., and Pérez-Alvarez, J. A., Application of functional citrus by-products to meat products, Trends in Food Science & Technology 15(3-4):176-185 (2004).
10.1016/j.tifs.2003.08.007He, C. A., Qi, J. R., Liao, J. S., Song, Y. T., and Wu, C. L., Excellent hydration properties and oil holding capacity of citrus fiber: Effects of component variation and microstructure, Food Hydrocolloids 144:108988 (2023).
10.1016/j.foodhyd.2023.108988Kim, S. H., Lee, M. H., and Sung, Y. J., Changes in char properties according to carbonization conditions of urban fallen leaves, Journal of Korea TAPPI 55(4):49-56 (2023).
10.7584/JKTAPPI.2023.8.55.4.49Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86(12-13):1781-1788 (2007).
10.1016/j.fuel.2006.12.013Cagnon, B., Py, X., Guillot, A., Stoeckli, F., and Chambat, G., Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresource Technology 100(1):292-298 (2009).
10.1016/j.biortech.2008.06.00918650083Hussin, F., Aroua, M. K., and Szlachta, M., Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review, Chemosphere 287:132250 (2022).
10.1016/j.chemosphere.2021.13225034547565Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., and Usman, A. R., Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes, Bioresource Technology 131:374-379 (2013).
10.1016/j.biortech.2012.12.16523376202Yuan, J. H., Xu, R. K., and Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technology 102(3):3488-3497 (2011).
10.1016/j.biortech.2010.11.01821112777Shetty, R. and Prakash, N. B., Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity, Scientific Reports 10(1):12249 (2020).
10.1038/s41598-020-69262-x32704053PMC7378052Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S., Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere 99:19-33 (2014).
10.1016/j.chemosphere.2013.10.07124289982Zhang, X., Zhang, P., Yuan, X., Li, Y., and Han, L., Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar, Bioresource Technology 296:122318 (2020).
10.1016/j.biortech.2019.12231831675650Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., and Khalid, K., Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust, BioResources 11(2):3356-3372 (2016).
10.15376/biores.11.2.3356-3372Mohan, D., Abhishek, K., Patel, M., and Pittman Jr, C. U., Harnessing biochar in contaminated soil for heavy metal immobilization, soil health enhancement, and carbon sequestration, Industrial & Engineering Chemistry Research 63(23):10380-10396 (2024).
10.1021/acs.iecr.4c00082Wang, T., Camps-Arbestain, M., and Hedley, M., Predicting C aromaticity of biochars based on their elemental composition, Organic Geochemistry 62:1-6 (2013).
10.1016/j.orggeochem.2013.06.012Antal, M. J. and Grønli, M., The art, science, and technology of charcoal production, Industrial & Engineering Chemistry Research 42(8):1619-1640 (2003).
10.1021/ie0207919Hilscher, A., Heister, K., Siewert, C., and Knicker, H., Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil, Organic Geochemistry 40(3):332-342 (2009).
10.1016/j.orggeochem.2008.12.004Schimmelpfennig, S. and Glaser, B., One step forward toward characterization: Some important material properties to distinguish biochars, Journal of Environmental Quality 41(4):1001-1013 (2012).
10.2134/jeq2011.014622751042Kaal, J., Schneider, M. P., and Schmidt, M. W., Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study, Biomass and Bioenergy 45:115-129 (2012).
10.1016/j.biombioe.2012.05.021He, M., Xu, Z., Sun, Y., Chan, P. S., Lui, I., and Tsang, D. C., Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar, Bioresource Technology 341:125811 (2021).
10.1016/j.biortech.2021.12581134454231Sohi, S., Loez-Capel, E., Krull, E., and Bol, R., Biochar's roles in soil and climate change: A review of research needs, CSIRO Land and Water Science Report 5(09):1-57 (2009).
Uchimiya, M., Chang, S., and Klasson, K. T., Screening biochars for heavy metal retention in soil: Role of oxygen functional groups, Journal of Hazardous Materials 190(1-3):432-441 (2011).
10.1016/j.jhazmat.2011.03.06321489689Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., and Smolders, E., Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study, Scientific Reports 6(1):25127 (2016).
10.1038/srep2512727113269PMC4844975Spokas, K. A., Review of the stability of biochar in soils: Predictability of O:C molar ratios, Carbon Management 1(2):289-303 (2010).
10.4155/cmt.10.32- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 57
- No :3
- Pages :65-76
- Received Date : 2025-05-22
- Revised Date : 2025-06-14
- Accepted Date : 2025-06-17
- DOI :https://doi.org/10.7584/JKTAPPI.2025.6.57.3.65