All Issue

2023 Vol.55, Issue 6 Preview Page

Research Article

30 December 2023. pp. 13-20
Abstract
References
1
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Mattews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., IPCC, 2021 : Summary for Policymakers. In Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2, Cambridge University Press, UK and New York, NY, USA, pp. 1-2391 (2021).
2
Concerned ministries, National carbon neutrality, green growth basic plan, (2023).
3
Park, H., Policy materials-Carbon neutrality promotion strategies and policy tasks for the domestic textile and paper industry, Yousungsa Co., Ltd., Daejeon, pp. 1-118 (2022).
4
Howarth, R. B., Schipper, L., Duerr, P. A., and Strom, S., Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity, Energy Economics 13(2):135-142 (1991). 10.1016/0140-9883(91)90046-3
5
Park, S. H., Decomposition of industrial energy consumption: an alternative method, Energy Economics 14(4):265-270 (1992). 10.1016/0140-9883(92)90031-8
6
Sun, J. W., Changes in energy consumption and energy intensity: a complete decomposition model, Energy Economics 20(1):85-100 (1998). 10.1016/S0140-9883(97)00012-1
7
Ang, B. W., Liu, F. L., and Chung, H. S., Index numbers and the fisher ideal index approach in energy decomposition analysis, National University of Singapore: Department of Industrial and Systems Engineering 32(9):1131-1139 (2002).
8
Boyd, G. A., Hanson, D. A., and Sterner, T., Decomposition of changes in energy intensity: a comparison of the divisia index and other methods, Energy Economics 10(4):309-312 (1988). 10.1016/0140-9883(88)90042-4
9
Liu, X. Q., Ang, B. W., and Ong, H. L., The application of the divisia index to the decomposition of changes in industrial energy consumption, The Energy Journal 13(4):161-177 (1992). 10.5547/ISSN0195-6574-EJ-Vol13-No4-9
10
Ang, B. W., Decomposition of industrial energy consumption: the energy intensity approach, Energy Economics 16(3):163-174 (1994). 10.1016/0140-9883(94)90030-2
11
Ang, B. W. and Choi., K. H., Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method, The Energy Journal 18(3):59-73 (1997). 10.5547/ISSN0195-6574-EJ-Vol18-No3-3
12
Ang, B. W., Zhang, F. L., and Choi, K., Factorizing changes in energy and environmental indicators through decomposition, Energy 23(6):489-495 (1998). 10.1016/S0360-5442(98)00016-4
13
Ang, B. W. and Liu, F. L., A new energy decomposition method: perfect in decomposition and consistent in aggregation, Energy 26(6):537-548 (2001). 10.1016/S0360-5442(01)00022-6
14
Na, I. G. and Lee, S. G., The Analysis on the determinants of energy efficiency changes in the industrial sector, Environmental and Resource Economics Review 17(2):255-286 (2008).
15
Jin, S. H. and Hwang, I. C., A Study on the characteristics of local energy consumption by using index decomposition analysis, Environmental and Resource Economics Review 18(4):557-586 (2009).
16
Jin, S. H. and Hwang, I. C., An Index decomposition analysis of local greenhouse gas emission characteristics: focusing on energy sector, Environmental Policy 17(3):101-128 (2009).
17
Oh, I., Wehrmeyer, W., and Mulugetta, Y., Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea, Energy Policy 38(1):364-377 (2010). 10.1016/j.enpol.2009.09.027
18
Kim, S. Y. and Kim, H. S., LMDI decomposition analysis for energy consumption of Korea's manufacturing industry, Korean Energy Economic Review 10(1):49-76 (2011).
19
Kim, S. Y. and Jung, K. H., LMDI decomposition analysis for GHG emissions of Korea's manufacturing industry, Environmental and Resource Economics Review 20(2):229-254 (2011).
20
Park, J. and Kim, S. Y., LMDI decomposition analysis for industry energy consumption of Korea and Japan, Korean Energy Economic Review 12(1):67-103 (2013).
21
Park, S. and Kim, J., A comparison of decomposition analyses for primary and final energy consumption of Korea, Environmental and Resource Economics Review 23(2):305-330 (2014). 10.15266/KREEA.2014.23.2.305
22
Park, N. B. and Shim, S. H., Decomposition analysis of energy consumption and GHG emissions by industry classification for Korea's GHG reduction targets, Environmental and Resource Economics Review 24(1):189-224 (2015). 10.15266/KEREA.2015.24.1.189
23
Kim, S. Y., Decomposition analysis on energy consumption of manufacturing industry, Environmental and Resource Economics Review 31(4):825-848 (2022).
24
Kim, S. Y., Factor decomposition analysis on electricity consumption of domestic manufacturing industry, Korean Energy Economic Review 22(1):73-99 (2023).
25
Kim, D. S., Sung, Y. J., Lee, J., Kim, S., and Park, G., Investigation into method for reducing greenhousse gas emission in paper industry with development of greenhouse gas inventory, Journal of Korea TAPPI 44(2):49-57 (2012). 10.7584/ktappi.2012.44.2.049
26
Ang, B. W., The LMDI approach to decomposition analysis: a practical guide, Energy Policy 33(7):867-871 (2005). 10.1016/j.enpol.2003.10.010
27
Greenhouse Gas Inventory and Research Center, 2022 National Greenhouse Gas Inventory Report of Korea, Greenhouse Gas Inventory and Research Center, Osong, pp. 1-1~7-38 (2022).
28
Korea Paper Association (2022), Korea Paper Industry Statistical Yearbook, Korea Paper Association.
29
Korea Paper Association (2022), Current status of energy consumption and greenhouse gas emissions in the paper pulp industry, Korea Paper Association.
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 55
  • No :6
  • Pages :13-20
  • Received Date : 2023-11-02
  • Revised Date : 2023-11-18
  • Accepted Date : 2023-11-20