All Issue

2024 Vol.56, Issue 6 Preview Page

Research Article

30 December 2024. pp. 40-50
Abstract
References
1

Morán, J. I., Alvarez, V. A., Cyras, V. P., and Vázquez, A., Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose 15:149-159 (2008).

10.1007/s10570-007-9145-9
2

Sacui, I. A., Nieuwendaal, R. C., Burnett, D. J., Stranick, S. J., Jorfi, M., Weder, C., Foster, E. J., Olsson, R. T., and Gilman, J. W., Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods, ACS Applied Materials & Interfaces 6(9):6127-6138 (2014).

10.1021/am500359f24746103
3

Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., and Jawaid, M., Production and modification of nanofibrillated cellulose using various mechanical processes: A review, Carbohydrate Polymers 99:649-665 (2014).

10.1016/j.carbpol.2013.08.06924274556
4

Santamaria-Echart, A., Ugarte, L., Arbelaiz, A., Gabilondo, N., Corcuera, M. A., and Eceiza, A., Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites, European Polymer Journal 76:99-109 (2016).

10.1016/j.eurpolymj.2016.01.035
5

Blaker, J. J., Lee, K. Y., Walters, M., Drouet, M., and Bismarck, A., Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites, Reactive and Functional Polymers 85:185-192 (2014).

10.1016/j.reactfunctpolym.2014.09.006
6

Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., and Ahmad, A., Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface, Carbohydrate Polymers 122:202-211 (2015).

10.1016/j.carbpol.2014.12.08125817660
7

Rajak, D. K., Pagar, D. D., Kumar, R., and Pruncu, C. I., Recent progress of reinforcement materials: A comprehensive overview of composite materials, Journal of Materials Research and Technology 8(6):6354-6374 (2019).

10.1016/j.jmrt.2019.09.068
8

Nair, S. S., Zhu, J. Y., Deng, Y., and Ragauskas, A. J., High performance green barriers based on nanocellulose, Sustainable Chemical Processes 2:23 (2014).

10.1186/s40508-014-0023-0
9

Rajapaksha, L. D., Saumyadi, H. A. D., Samarasekara, A. M. P. B., Amarasinghe, D. A. S., and Karunanayake, L., Development of cellulose based light weight polymer composites, 2017 Moratuwa Engineering Research Conference (MERCon) IEEE, pp. 182-186.

10.1109/MERCon.2017.7980478
10

Varyan, I., Kolesnikova, N., Xu, H., Tyubaeva, P., and Popov, A., Biodegradability of polyolefin-based compositions: effect of natural rubber, Polymers 14(3):530 (2022).

10.3390/polym1403053035160520PMC8838498
11

Sanches, A. O., Ricco, L. H. S., Malmonge, L. F., da Silva, M. J., Sakamoto, W. K., and Malmonge, J. A., Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties, Polymer Testing 40:99-105 (2014).

10.1016/j.polymertesting.2014.08.013
12

Liu, H., Cui, S., Shang, S., Wang, D., and Song, J., Properties of rosin-based waterborne polyurethanes/cellulose nanocrystals composites, Carbohydrate polymers 96(2):510-515 (2013).

10.1016/j.carbpol.2013.04.01023768594
13

Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., and Yue, C., Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals, Carbohydrate Polymers 87(3):2068-2075 (2012).

10.1016/j.carbpol.2011.10.027
14

Cheng, D., Wei, P., Zhang, L., and Cai, J., New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane, ACS Sustainable Chemistry & Engineering 7(13):11850-11860 (2019).

10.1021/acssuschemeng.9b02424
15

Cordero, A. I., Amalvy, J. I., Fortunati, E., Kenny, J. M., and Chiacchiarelli, L. M., The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites, Carbohydrate Polymers 134:110-118 (2015).

10.1016/j.carbpol.2015.07.07726428106
16

Özgür Seydibeyoğlu, M. and Oksman, K., Novel nanocomposites based on polyurethane and micro fibrillated cellulose, Composites Science and Technology 68(3-4):908-914 (2008).

10.1016/j.compscitech.2007.08.008
17

Li, K., Wei, P., Huang, J., Xu, D., Zhong, Y., Hu, L., Zhang, L., and Cai, J., Mechanically strong shape-memory and solvent-resistant double-network polyurethane/nanoporous cellulose gel nanocomposites, ACS Sustainable Chemistry & Engineering 7(19):15974-15982 (2019).

10.1021/acssuschemeng.9b02341
18

Park, S. H., Oh, K. W., and Kim, S. H., Reinforcement effect of cellulose nanowhisker on bio-based polyurethane, Composites Science and Technology 86:82-88 (2013).

10.1016/j.compscitech.2013.07.006
19

Yao, X., Qi, X., He, Y., Tan, D., Chen, F., and Fu, Q., Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose, ACS Applied Materials & Interfaces 6(4):2497-2507 (2014).

10.1021/am405669424476503
20

Saralegi, A., Rueda, L., Martin, L., Arbelaiz, A., Eceiza, A., and Corcuera, M. A., From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites, Composites Science and Technology 88:39-47 (2013).

10.1016/j.compscitech.2013.08.025
21

Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A., and Eceiza, A., The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties, Polymer Degradation and Stability 173:109084 (2020).

10.1016/j.polymdegradstab.2020.109084
22

Mutjé, P., Vallejos, M., Girones, J., Vilaseca, F., López, A., López, J., and Méndez, J., Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands, Journal of Applied Polymer Science 102(1):833-840 (2006).

10.1002/app.24315
23

Yano, H., Production of cellulose nanofibres and their applications, International Polymer Science and Technology 40:15-21 (2013).

10.1177/0307174X1304000704
24

Howarter, J. A. and Youngblood, J. P., Surface modification of polymers with 3-Aminopropyltriethoxysilane as a general pretreatment for controlled wettability, Macromolecules 40(4):1128-1132 (2007).

10.1021/ma062028m
25

George, J., Sreekala, M. S., and Thomas, S., A review on interface modification and characterization of natural fiber reinforced plastic composites, Polymer Engineering & Science 41(9):1471-1485 (2001).

10.1002/pen.10846
26

Narayanan, T. S. N. S., Park, I. S., and Lee, M. H., 2 - Surface modification of magnesium and its alloys for biomedical applications: Opportunities and challenges, Surface Modification of Magnesium and its Alloys for Biomedical Applications, Narayanan, T. S. N. S., Park, I. S., and Lee M. H., (ed.), Woodhead Publishing, Oxford, pp. 29-87 (2015).

10.1016/B978-1-78242-077-4.00002-4
27

Salon, M. C., Abdelmouleh, M., Boufi, S., Belgacem, M. N., and Gandini, A., Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions, Journal of Colloid and Interface Science 289(1):249-261 (2005).

10.1016/j.jcis.2005.03.07015907861
28

Rizwan, K., Babar, Z. B., Munir, S., Arshad, A., and Rauf, A., Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices, Environmental Research 215:114398 (2022).

10.1016/j.envres.2022.11439836174757
29

Ingale, S. V., Wagh, P. B., Tripathi, A. K., Kamble, V. S., Kumar, R., and Gupta, S. C., Physico-chemical properties of silica aerogels prepared from TMOS/MTMS mixtures, Journal of Porous Materials 18:567-572 (2011).

10.1007/s10934-010-9410-4
30

Toshio, T., The infrared spectra of methoxy-, methylmethoxy- and methoxy endblocked dimethyl-polysiloxanes, Bulletin of the Chemical Society of Japan 31(6):762-766 (1958).

10.1246/bcsj.31.762
31

Datta, J. and Głowińska, E., Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes, Industrial Crops and Products 61:84-91 (2014).

10.1016/j.indcrop.2014.06.050
32

Dou, H. M., Ding, J. H., Chen, H., Wang, Z., Zhang, A. F., and Yu, H. B., Bio-based, biodegradable and amorphous polyurethanes with shape memory behavior at body temperature, RSC Advances 9(23):13104-13111 (2019).

10.1039/C9RA01583C35520808PMC9063761
33

Anjum, A., Zuber, M., Zia, K. M., Anjum, M. N., and Aftab, W., Preparation and characterization of guar gum based polyurethanes, International Journal of Biological Macromolecules 183:2174-2183 (2021).

10.1016/j.ijbiomac.2021.06.02534102237
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :6
  • Pages :40-50
  • Received Date : 2024-11-19
  • Revised Date : 2024-12-05
  • Accepted Date : 2024-12-05