General
De Ponte, C., Liscio, M. C., and Sospiro, P., State of the art on the Nexus between sustainability, fashion industry and sustainable business model, Sustainable Chemistry and Pharmacy 32:100968 (2023).
10.1016/j.scp.2023.100968Omoloso, O., Mortimer, K., Wise, W. R., and Jraisat, L., Sustainability research in the leather industry: A critical review of progress and opportunities for future research, Journal of Cleaner Production 285:125441 (2021).
10.1016/j.jclepro.2020.125441Chaurasia, P. and Kumar, S., Treatment, recycling, and reuse of wastewater from tannery industry: Recent trends, challenges, and opportunities, Omics Insights in Environmental Bioremediation 317-337 (2022).
10.1007/978-981-19-4320-1_14Chiampo, F., Shanthakumar, S., Ricky, R., and Ganapathy, G. P., Tannery: environmental impacts and sustainable technologies. Materials Today: Proceedings (2023).
10.1016/j.matpr.2023.02.025Mohamed, N. M. H. and Hassan, N. N. E., An investigation into the physical and functional properties and sew ability of Faux leather, International Design Journal 5(2):517-524 (2015).
10.21608/idj.2015.101807Sun, Z., Ren, S., Wu, T., Wen, J., Fang, J., and Fan, H., A self-matting waterborne polyurethane coating for PVC artificial leather, Polymers 15(1):127 (2022).
10.3390/polym1501012736616477PMC9824117Luo, Q., Gao, H., Peng, L., Liu, G., and Zhang, Z., Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather, Journal of Applied Polymer Science 133(22) (2016).
10.1002/app.43465Sanchez, M., Garotte, N. C., Maestre, I., and Bertazzo, M., Latest developments in antimicrobial functional materials for footwear in Microbial pathogens and strategies for combating them: science, technology and education, edited by Vilas, AM, 1:102-113 (2013).
Udkhiyati, M., Rosiati, N. M., and Silvianti, F., The Influence of Chitosan Towards Antibacterial Properties in Natural Leather, Revista de Pielarie Incaltaminte 20(4):425 (2020).
10.24264/lfj.20.4.8Amobonye, A., Bhagwat, P., Singh, S., and Pillai, S., Plastic biodegradation: Frontline microbes and their enzymes, Science of the Total Environment 759:143536 (2021).
10.1016/j.scitotenv.2020.14353633190901Kemona, A. and Piotrowska, M., Polyurethane recycling and disposal: Methods and prospects, Polymers 12(8):1752 (2020).
10.3390/polym1208175232764494PMC7464512Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., RP De vries., D Endy., and Wösten, H. A., Growing a circular economy with fungal biotechnology: a white paper, Fungal Biology and Biotechnology 7(1):5 (2020).
10.1186/s40694-020-00095-z32280481PMC7140391Domskiene, J., Sederaviciute, F., and Simonaityte, J. Kombucha, bacterial cellulose for sustainable fashion, International Journal of Clothing Science and Technology 31(5):644-652 (2019).
10.1108/IJCST-02-2019-0010Rathinamoorthy, R., Sharmila Bharathi, T., Snehaa, M., and Swetha, C., Mycelium as sustainable textile material-review on recent research and future prospective, International Journal of Clothing Science and Technology 35(3):454-476 (2023).
10.1108/IJCST-01-2022-0003Feofilova, E. P., The fungal cell wall: modern concepts of its composition and biological function, Microbiology 79(6):711-720 (2010).
10.1134/S0026261710060019Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L., and Peeters, E., Current state and future prospects of pure mycelium materials, Fungal Biology and Biotechnology 8:1-10 (2021).
10.1186/s40694-021-00128-134930476PMC8691024Weiland, K., Jones, M., Fortea-Verdejo, M., Mautner, A., Bismarck, A., and John, S., Waste-derived nanocellulose-chitin hybrid materials with tunable physical properties, In 22nd International Conference on Composite Materials, Melbourne, Australia (2019).
Jones, M. P., Lawrie, A. C., Huynh, T. T., Morrison, P. D., Mautner, A., Bismarck, A., and John, S., Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth, Process Biochemistry 80:95-102 (2019).
10.1016/j.procbio.2019.01.018Nawawi, W. M., Jones, M., Murphy, R. J., Lee, K. Y., Kontturi, E., and Bismarck, A., Nanomaterials derived from fungal sources-is it the new hype?, Biomacromolecules 21(1):30-55 (2019).
10.1021/acs.biomac.9b0114131592650PMC7076696Jones, M., Weiland, K., Kujundzic, M., Theiner, J., Kählig, H., Kontturi, E., Jhon, S., Bismarck, A., and Mautner, A., Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties, Biomacromolecules 20(9):3513-3523 (2019).
10.1021/acs.biomac.9b0079131355634Thoemen, H. and Humphrey, P. E., Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer, European Journal of Wood and Wood Products 64(1):1-10 (2006).
10.1007/s00107-005-0027-2Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., and Yang, G., Synthesis and applications of fungal mycelium-based advanced functional materials, Journal of Bioresources and Bioproducts 6(1):1-10 (2021).
10.1016/j.jobab.2021.01.001Berger, R. G., Bordewick, S., Krahe, N. K., and Ersoy, F., Mycelium vs. fruiting bodies of edible fungi-A comparison of metabolites, Microorganisms 10(7):1379 (2022).
10.3390/microorganisms1007137935889098PMC9315710Gandia, A., van den Brandhof, J. G., Appels, F. V. W., and Jones, M. P., Flexible fungal materials: Shaping the future, Trends in Biotechnology 39(12):1321-1331 (2021).
10.1016/j.tibtech.2021.03.00233812663Jones, M., Gandia, A., John, S., and Bismarck, A., Leather-like material biofabrication using fungi, Nature Sustainability 4(1):9-16 (2021).
10.1038/s41893-020-00606-1Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., and Picu, R. C., Morphology and mechanics of fungal mycelium, Scientific Reports 7(1):13070 (2017).
10.1038/s41598-017-13295-229026133PMC5638950Pelletier, M. G., Holt, G. A., Wanjura, J. D., Greetham, L., McIntyre, G., Bayer, E., and Kaplan-Bie, J., Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative, Industrial Crops and Products 139:111533 (2019).
10.1016/j.indcrop.2019.111533Cerimi, K., Akkaya, K. C., Pohl, C., Schmidt, B., and Neubauer, P., Fungi as source for new bio-based materials: a patent review, Fungal biology and biotechnology 6:1-10 (2019).
10.1186/s40694-019-0080-y31673396PMC6814964Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., and Athanassiou, A., Advanced materials from fungal mycelium: fabrication and tuning of physical properties, Scientific Reports 7(1):41292 (2017).
10.1038/srep4129228117421PMC5259796Majib, N. M., Yaacob, N. D., Ting, S. S., Rohaizad, N. M., and Azizul Rashidi, A. M., Fungal mycelium-based biofoam composite: A review in growth, properties and application, Progress in Rubber, Plastics and Recycling Technology 14777606241252702
Hölker, U., Höfer, M., and Lenz, J., Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Applied Microbiology and Biotechnology 64:175-186 (2004).
10.1007/s00253-003-1504-314963614Liu, S. R. and Zhang, W. R., Optimization of submerged culture conditions involving a developed fine powder solid seed for exopolysaccharide production by the medicinal mushroom Ganoderma lucidum, Food Science and Biotechnology 28(4):1135-1145 (2019).
10.1007/s10068-018-0536-531275713PMC6595012Bae, J. T., Park, J. P., Song, C. H., Yu, C. B., Park, M. K., and Yun, J. W., Effect of carbon source on the mycelial growth and exo-biopolymer production by submerged culture of Paecilomyces japonica, Journal of Bioscience and Bioengineering 91(5):522-524 (2001).
10.1016/S1389-1723(01)80284-X16233033Abo Elsoud, M. M. and El Kady, E. M., Current trends in fungal biosynthesis of chitin and chitosan, Bulletin of the National Research Centre 43(1):1-12 (2019).
10.1186/s42269-019-0105-yJohnson, M. A. and Carlson, J. A., Mycelial paper: A potential resource recovery process?, Biotechnology and Bioengineering 20(7):1063-1084 (1978).
10.1002/bit.260200708Mousavi, S. N., Ramamoorthy, S. K., Hakkarainen, M., and Zamani, A., Production of Mycelium-Based Papers from Carrot Pomace and Their Potential Applications for Dye Removal, Journal of Polymers and the Environment 1-17 (2024).
10.1007/s10924-024-03238-0Köhnlein, M. B. M., Abitbol, T., Oliveira, A. O., Magnusson, M. S., Adolfsson, K. H., Svensson, S. E., Ferreira, J. A., Hakkarainen, M., and Zamani, A., Bioconversion of food waste to biocompatible wet-laid fungal films, Materials & Design 216:110534 (2022).
10.1016/j.matdes.2022.110534Fazli Wan Nawawi, W. M., Lee, K. Y., Kontturi, E., Murphy, R. J., and Bismarck, A., Chitin nanopaper from mushroom extract: natural composite of nanofibers and glucan from a single biobased source, ACS Sustainable Chemistry & Engineering 7(7):6492-6496 (2019).
10.1021/acssuschemeng.9b00721Kurita, K., Chitin and chitosan: functional biopolymers from marine crustaceans, Marine Biotechnology 8:203-22 (2006).
10.1007/s10126-005-0097-516532368Janesch, J., Jones, M., Bacher, M., Kontturi, E., Bismarck, A., and Mautner, A., Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water, Reactive and Functional Polymers 146:104428 (2020).
10.1016/j.reactfunctpolym.2019.104428Dhanda, V., Revolutionizing material: The rise of bio leather as eco-friendly and sustainable approach (2024).
10.33545/2618060X.2024.v7.i11b.1954Pešić, M., Nemeša, I., Bukhonka, N., and Bozoki, V., Fruit Based Sustainable Textile Materials (2023).
Sureshkumar, P. S. Thanikaivelan, P., and Phebe, K. Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: An approach toward making amalgamated leather products, Journal of Natural Fibers 9(1):41-54 (2012).
10.1080/15440478.2012.652834Thomas, S., Pothan, L. A., and Jacob, M. Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre, Journal of Applied Polymer Science 96(5):1699-1712 (2005).
Teklay, A., Shrestha, P., and Subramanian, K. Preparation and characterization of composite sheets from solid leather waste with plant fibers: a waste utilization effort, Journal of Cleaner Production 325:129345 (2021).
Quintana, E., Valls, C., and Roncero, M. B., Dissolving-grade pulp: a sustainable source for fiber production, Wood Science and Technology 58(1):23-85 (2024).
10.1007/s00226-023-01519-wThanikaivelan, P., Sureshkumar, P. S., and Chandrasekaran, B. Development of green leather alternative from natural rubber and pineapple leaf fiber, Journal of Cleaner Production 352:131582 (2022).
Pandit, A. P. and Avachat, A. M., Nonwoven textiles in smart and wearable technologies, Smart Textiles from Natural Resources 367-394 (2024).
10.1016/B978-0-443-15471-3.00004-2Muthu, S. S. and Ramchandani, M., Natural/Agro-derived Versus Artificial Vegan Leather: How Leather Alternatives Influence the Sustainable Luxury and Fashion Industry, 2024 Vegan Alternatives for Leather, Springer Nature, Switzerland, pp. 63-74.
10.1007/978-3-031-65365-0_4Malabadi, R. B., Kolkar, K. P., Chalannavar, R. K., and Baijnath. H., Plant-based leather production: An update, World Journal of Advanced Engineering Technology and Sciences 14(1):031-059 (2025).
10.30574/wjaets.2025.14.1.0648Colin-Chavez, C., Soto-Valdez, H., Turrado-Saucedo, J., Rodriguez-Felix, A., Peralta, E., Saucedo-Corona, A. R., and Guzman-Corona, M., Papermaking as Potential Use of Fibers from Mexican Opuntia ficus-indica Waste, Biotecnia 23(1):141-150 (2021).
10.18633/biotecnia.v23i1.1315Wjunow, C., Moselewski, K. L., Huhnen, Z., Sultanova, S., and Sabantina, L., Sustainable textiles from unconventional biomaterials-cactus based, Engineering Proceedings 37(1):58, (2023).
10.3390/ECP2023-14652Lew, R. R., Biomechanics of hyphal growth, Biology of the Fungal Cell 83-94 (2019).
10.1007/978-3-030-05448-9_5Arroyo, J., Farkaš, V., Sanz, A. B., and Cabib, E., Strengthening the fungal cell wall through chitin-glucan cross‐links: effects on morphogenesis and cell integrity, Cellular Microbiology 18(9):1239-1250 (2016).
10.1111/cmi.1261527185288Vega, K. and Kalkum, M., Chitin, chitinase responses, and invasive fungal infections, International Journal of Microbiology 2012(1):920459 (2012).
10.1155/2012/92045922187561PMC3236456Doudna, J. A. and Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9, Science 346(6213):1258096 (2014).
10.1126/science.125809625430774Amobonye, A., Bhagwat, P., Singh, S., and Pillai, S., Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte, Fungal Biology 125(1):39-48 (2021).
10.1016/j.funbio.2020.10.00333317775Kniep, J., Graupner, N., Reimer, J. J., and Müssig, J., Mycelium-based biomimetic composite structures as a sustainable leather alternative, Materials Today Communications 39:109100 (2024).
10.1016/j.mtcomm.2024.109100Amobonye, A., Lalung, J., Awasthi, M. K., and Pillai, S., Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry, Sustainable Materials and Technologies e00724 (2023).
10.1016/j.susmat.2023.e00724Whabi, V., Yu, B., and Xu, J., From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow, Journal of Fungi 10(3):183 (2024).
10.3390/jof1003018338535193PMC10970937Elsacker, E., Vandelook, S., and Peeters, E., Recent technological innovations in mycelium materials as leather substitutes: a patent review, Frontiers in Bioengineering and Biotechnology 11:1204861 (2023).
10.3389/fbioe.2023.120486137609120PMC10441217Karunarathne, A., Nabiyeva, G., Rasmussen, C. J., Alkhoury, K., Assem, N., Bauer, J., Chester, A. S., Khalizov, A. F., and Gor, G. Y., Effects of Humidity on Mycelium-Based Leather, ACS Applied Bio Materials 7(10):6441-6450 (2024).
10.1021/acsabm.4c0058639383329Beppu, M. M., Vieira, R. S., Aimoli, C. G., and Santana, C. C., Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption, Journal of Membrane Science 301(1-2):126-130 (2007).
10.1016/j.memsci.2007.06.015Paetau, I., Chen, C. Z., and Jane, J., Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption, Journal of Environmental Polymer Degradation 2:211-217 (1994).
10.1007/BF02067447Appels, F. V., van den Brandhof, J. G., Dijksterhuis, J., de Kort, G. W., and Wösten, H. A., Fungal mycelium classified in different material families based on glycerol treatment, Communications Biology 3(1):334 (2020).
10.1038/s42003-020-1064-432591629PMC7320155Scullin, M., Wenner, N., Chase, J., Miller, Q., and Ross, P., Penetration and adhesion of finishes for fungal materials through solubilization, emulsion, or dispersion in water-soluble materials and the use of surfactants. U.S. Pat. Appl. No. 11,807,983 (2023).
Verma, N., Jujjavarapu, S. E., and Mahapatra, C., Green sustainable biocomposites: Substitute to plastics with innovative fungal mycelium based biomaterial, Journal of Environmental Chemical Engineering 11(5):110396 (2023).
10.1016/j.jece.2023.110396Midukov, N. P., Schrinner, T., Grossmann, H., Smolin, A. S., and Kurov, V. S., Effect of virgin fiber content on strength and stiffness characteristics of a three-layer testliner, BioResources 10(1):1747-1756 (2015).
10.15376/biores.10.1.1747-1756Eshbaeva, U. J. and Djalilov, A. A., Composite technology for the production of paper and cardboard including synthetic fibers, Proceedings of the National Academy of Sciences of Belarus Chemical Series 58(4):418-422 (2022).
10.29235/1561-8331-2022-58-4-418-422Sulaiman, N. S., Overview of Cellulose Fiber as Materials for Paper Production, Cellulose, CRC Press, pp. 253-267 (2023).
10.1201/9781003358084-17Bednarowicz, A., Tarzyńska, N., Patlewicz, M., Pabjańczyk-Wlazło, E. K., Szparaga, G., and Draczyński, Z., Tailored Chitin Copolyesters: A Study of Butyric-Succinic Derivative for Advanced Material Applications (2024).
10.20944/preprints202412.1005.v138930873PMC11206315Balasubramanian, V. and Moudgil, B. M., Antibacterial Properties of Soft Solids (Chitosan and Polyacrylic Acid Gel Particles) in Solution and on a Bio-Surface (VITRO-SKIN), KONA Powder and Particle Journal 2025012 (2024).
10.14356/kona.2025012Lee, E. K. and Kim, Y. K., Synthesis and antimicrobial properties of the chitosan derivatives, Elastomers and Composites 56(4):254-263 (2021).
Bustillos, J., Loganathan, A., Agrawal, R., Gonzalez, B. A., Perez, M. G., Ramaswamy, S., Boesl, B., and Agarwal, A., Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties, ACS Applied Bio Materials 3:3145-3156 (2020)
10.1021/acsabm.0c0016435025358Balasubramanian, M. and Sheykhmaleki, P., Comprehending the consumer behavior toward sustainable apparel, Sustainability 16(18):8026 (2024).
10.3390/su16188026Malabadi, R. B., Kolkar, K. P., and Chalannavar, R. K., Plant-based leather production: An update, World Journal of Advanced Engineering Technology and Sciences 14(01):031-059 (2025).
10.30574/wjaets.2025.14.1.0648Wjunow, C., Moselewski, K. L., Huhnen, Z., Sultanova, S. and Sabantina, L., Sustainable textiles from unconventional biomaterials-cactus based, Engineering Proceedings 37:58 (2023).
10.3390/ECP2023-14652Rimantho, D., Chaerani, L., and Sundari, A. S., Initial mechanical properties of orange peel waste as raw material for vegan leather production, Case Studies in Chemical and Environmental Engineering 10:100786 (2024).
10.1016/j.cscee.2024.100786Wijayarathna, E. R. K. B., Mohammadkhani, G., Soufiani, A. M., Adolfsson, K. H., Ferreira, J. A., Hakkarainen, M., Berglund, L., Heinmaa, I., Root, A., and Zamani, A., Fungal textile alternatives from bread waste with leather-like properties, Resources, Conservation & Recycling 179:10604 (2022).
10.1016/j.resconrec.2021.106041Gandia, A., van den Brandhof, J. G., Appels, F. V. W., and Jones, M. P., Flexible fungal materials: Shaping the future, Trends in Biotechnology 39(12):1321-1331 (2021).
10.1016/j.tibtech.2021.03.00233812663Raman, J., Kim, D. S., Kim, H. S., Oh, D. S., and Shin, H. J., Mycofabrication of mycelium-based leather from brown-rot fungi, Journal of Fungi 8:317 (2022).
10.3390/jof803031735330319PMC8950489Jones, M., Gandia, A., John, S., and Bismarck, A., Leather-like material bio-fabrication using fungi, Nature Sustainability 7:1-8 (2020).
10.1038/s41893-020-00606-1Meyer, M., Dietrich, S., Schulz, H., and Mondschein, A., Comparison of the technical performance of leather, artificial leather, and trendy alternatives, Coatings 11:226 (2021).
10.3390/coatings11020226Saha, N., Fahanwi, A. N., Nguyen, H., and Saha, P., Environmentally friendly and animal-free leather: Fabrication and characterization, AIP Conference Proceedings 2289:020049 (2020).
10.1063/5.0028467Prastiwi, I. E. and Anik, A., The impact of credit diversification on credit risk and performance of Indonesian banks, Global Review of Islamic Economics and Business 8(1):013-021 (2020).
10.14421/grieb.2020.081-02Patel, J. and Sharma, J., Alternative applications of mushroom mycelium for environmental sustainability: opportunities, challenges and future perspective, Mushroom Research 32(2):99-113, (2023).
10.36036/MR.32.2.2023.141696Asabuwa Ngwabebhoh, F., Saha, N., Saha, T., and Saha, P., Bio-innovation of new-generation nonwoven natural fibrous materials for the footwear industry: Current state-of-the-art and sustainability panorama, Journal of Natural Fibers 19(13):4897-4907 (2022).
10.1080/15440478.2020.1870635Amobonye A., Lalung J., Awasthi M. K., and Pillai S., Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry, Sustainable Materials and Technologies 38:e00724 (2023).
10.1016/j.susmat.2023.e00724- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 57
- No :1
- Pages :5-21
- Received Date : 2025-01-31
- Revised Date : 2025-02-04
- Accepted Date : 2025-02-04
- DOI :https://doi.org/10.7584/JKTAPPI.2025.2.57.1.5