All Issue

2025 Vol.57, Issue 1

General

28 February 2025. pp. 5-21
Abstract
References
1

De Ponte, C., Liscio, M. C., and Sospiro, P., State of the art on the Nexus between sustainability, fashion industry and sustainable business model, Sustainable Chemistry and Pharmacy 32:100968 (2023).

10.1016/j.scp.2023.100968
2

Omoloso, O., Mortimer, K., Wise, W. R., and Jraisat, L., Sustainability research in the leather industry: A critical review of progress and opportunities for future research, Journal of Cleaner Production 285:125441 (2021).

10.1016/j.jclepro.2020.125441
3

Chaurasia, P. and Kumar, S., Treatment, recycling, and reuse of wastewater from tannery industry: Recent trends, challenges, and opportunities, Omics Insights in Environmental Bioremediation 317-337 (2022).

10.1007/978-981-19-4320-1_14
4

Chiampo, F., Shanthakumar, S., Ricky, R., and Ganapathy, G. P., Tannery: environmental impacts and sustainable technologies. Materials Today: Proceedings (2023).

10.1016/j.matpr.2023.02.025
5

Mohamed, N. M. H. and Hassan, N. N. E., An investigation into the physical and functional properties and sew ability of Faux leather, International Design Journal 5(2):517-524 (2015).

10.21608/idj.2015.101807
6

Sun, Z., Ren, S., Wu, T., Wen, J., Fang, J., and Fan, H., A self-matting waterborne polyurethane coating for PVC artificial leather, Polymers 15(1):127 (2022).

10.3390/polym1501012736616477PMC9824117
7

Luo, Q., Gao, H., Peng, L., Liu, G., and Zhang, Z., Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather, Journal of Applied Polymer Science 133(22) (2016).

10.1002/app.43465
8

Sanchez, M., Garotte, N. C., Maestre, I., and Bertazzo, M., Latest developments in antimicrobial functional materials for footwear in Microbial pathogens and strategies for combating them: science, technology and education, edited by Vilas, AM, 1:102-113 (2013).

9

Udkhiyati, M., Rosiati, N. M., and Silvianti, F., The Influence of Chitosan Towards Antibacterial Properties in Natural Leather, Revista de Pielarie Incaltaminte 20(4):425 (2020).

10.24264/lfj.20.4.8
10

Amobonye, A., Bhagwat, P., Singh, S., and Pillai, S., Plastic biodegradation: Frontline microbes and their enzymes, Science of the Total Environment 759:143536 (2021).

10.1016/j.scitotenv.2020.14353633190901
11

Kemona, A. and Piotrowska, M., Polyurethane recycling and disposal: Methods and prospects, Polymers 12(8):1752 (2020).

10.3390/polym1208175232764494PMC7464512
12

Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., RP De vries., D Endy., and Wösten, H. A., Growing a circular economy with fungal biotechnology: a white paper, Fungal Biology and Biotechnology 7(1):5 (2020).

10.1186/s40694-020-00095-z32280481PMC7140391
13

Domskiene, J., Sederaviciute, F., and Simonaityte, J. Kombucha, bacterial cellulose for sustainable fashion, International Journal of Clothing Science and Technology 31(5):644-652 (2019).

10.1108/IJCST-02-2019-0010
14

Rathinamoorthy, R., Sharmila Bharathi, T., Snehaa, M., and Swetha, C., Mycelium as sustainable textile material-review on recent research and future prospective, International Journal of Clothing Science and Technology 35(3):454-476 (2023).

10.1108/IJCST-01-2022-0003
15

Feofilova, E. P., The fungal cell wall: modern concepts of its composition and biological function, Microbiology 79(6):711-720 (2010).

10.1134/S0026261710060019
16

Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L., and Peeters, E., Current state and future prospects of pure mycelium materials, Fungal Biology and Biotechnology 8:1-10 (2021).

10.1186/s40694-021-00128-134930476PMC8691024
17

Weiland, K., Jones, M., Fortea-Verdejo, M., Mautner, A., Bismarck, A., and John, S., Waste-derived nanocellulose-chitin hybrid materials with tunable physical properties, In 22nd International Conference on Composite Materials, Melbourne, Australia (2019).

18

Jones, M. P., Lawrie, A. C., Huynh, T. T., Morrison, P. D., Mautner, A., Bismarck, A., and John, S., Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth, Process Biochemistry 80:95-102 (2019).

10.1016/j.procbio.2019.01.018
19

Nawawi, W. M., Jones, M., Murphy, R. J., Lee, K. Y., Kontturi, E., and Bismarck, A., Nanomaterials derived from fungal sources-is it the new hype?, Biomacromolecules 21(1):30-55 (2019).

10.1021/acs.biomac.9b0114131592650PMC7076696
20

Jones, M., Weiland, K., Kujundzic, M., Theiner, J., Kählig, H., Kontturi, E., Jhon, S., Bismarck, A., and Mautner, A., Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties, Biomacromolecules 20(9):3513-3523 (2019).

10.1021/acs.biomac.9b0079131355634
21

Thoemen, H. and Humphrey, P. E., Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer, European Journal of Wood and Wood Products 64(1):1-10 (2006).

10.1007/s00107-005-0027-2
22

Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., and Yang, G., Synthesis and applications of fungal mycelium-based advanced functional materials, Journal of Bioresources and Bioproducts 6(1):1-10 (2021).

10.1016/j.jobab.2021.01.001
23

Berger, R. G., Bordewick, S., Krahe, N. K., and Ersoy, F., Mycelium vs. fruiting bodies of edible fungi-A comparison of metabolites, Microorganisms 10(7):1379 (2022).

10.3390/microorganisms1007137935889098PMC9315710
24

Gandia, A., van den Brandhof, J. G., Appels, F. V. W., and Jones, M. P., Flexible fungal materials: Shaping the future, Trends in Biotechnology 39(12):1321-1331 (2021).

10.1016/j.tibtech.2021.03.00233812663
25

Jones, M., Gandia, A., John, S., and Bismarck, A., Leather-like material biofabrication using fungi, Nature Sustainability 4(1):9-16 (2021).

10.1038/s41893-020-00606-1
26

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., and Picu, R. C., Morphology and mechanics of fungal mycelium, Scientific Reports 7(1):13070 (2017).

10.1038/s41598-017-13295-229026133PMC5638950
27

Pelletier, M. G., Holt, G. A., Wanjura, J. D., Greetham, L., McIntyre, G., Bayer, E., and Kaplan-Bie, J., Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative, Industrial Crops and Products 139:111533 (2019).

10.1016/j.indcrop.2019.111533
28

Cerimi, K., Akkaya, K. C., Pohl, C., Schmidt, B., and Neubauer, P., Fungi as source for new bio-based materials: a patent review, Fungal biology and biotechnology 6:1-10 (2019).

10.1186/s40694-019-0080-y31673396PMC6814964
29

Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., and Athanassiou, A., Advanced materials from fungal mycelium: fabrication and tuning of physical properties, Scientific Reports 7(1):41292 (2017).

10.1038/srep4129228117421PMC5259796
30

Majib, N. M., Yaacob, N. D., Ting, S. S., Rohaizad, N. M., and Azizul Rashidi, A. M., Fungal mycelium-based biofoam composite: A review in growth, properties and application, Progress in Rubber, Plastics and Recycling Technology 14777606241252702

31

Hölker, U., Höfer, M., and Lenz, J., Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Applied Microbiology and Biotechnology 64:175-186 (2004).

10.1007/s00253-003-1504-314963614
32

Liu, S. R. and Zhang, W. R., Optimization of submerged culture conditions involving a developed fine powder solid seed for exopolysaccharide production by the medicinal mushroom Ganoderma lucidum, Food Science and Biotechnology 28(4):1135-1145 (2019).

10.1007/s10068-018-0536-531275713PMC6595012
33

Bae, J. T., Park, J. P., Song, C. H., Yu, C. B., Park, M. K., and Yun, J. W., Effect of carbon source on the mycelial growth and exo-biopolymer production by submerged culture of Paecilomyces japonica, Journal of Bioscience and Bioengineering 91(5):522-524 (2001).

10.1016/S1389-1723(01)80284-X16233033
34

Abo Elsoud, M. M. and El Kady, E. M., Current trends in fungal biosynthesis of chitin and chitosan, Bulletin of the National Research Centre 43(1):1-12 (2019).

10.1186/s42269-019-0105-y
35

Johnson, M. A. and Carlson, J. A., Mycelial paper: A potential resource recovery process?, Biotechnology and Bioengineering 20(7):1063-1084 (1978).

10.1002/bit.260200708
36

Mousavi, S. N., Ramamoorthy, S. K., Hakkarainen, M., and Zamani, A., Production of Mycelium-Based Papers from Carrot Pomace and Their Potential Applications for Dye Removal, Journal of Polymers and the Environment 1-17 (2024).

10.1007/s10924-024-03238-0
37

Köhnlein, M. B. M., Abitbol, T., Oliveira, A. O., Magnusson, M. S., Adolfsson, K. H., Svensson, S. E., Ferreira, J. A., Hakkarainen, M., and Zamani, A., Bioconversion of food waste to biocompatible wet-laid fungal films, Materials & Design 216:110534 (2022).

10.1016/j.matdes.2022.110534
38

Fazli Wan Nawawi, W. M., Lee, K. Y., Kontturi, E., Murphy, R. J., and Bismarck, A., Chitin nanopaper from mushroom extract: natural composite of nanofibers and glucan from a single biobased source, ACS Sustainable Chemistry & Engineering 7(7):6492-6496 (2019).

10.1021/acssuschemeng.9b00721
39

Kurita, K., Chitin and chitosan: functional biopolymers from marine crustaceans, Marine Biotechnology 8:203-22 (2006).

10.1007/s10126-005-0097-516532368
40

Janesch, J., Jones, M., Bacher, M., Kontturi, E., Bismarck, A., and Mautner, A., Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water, Reactive and Functional Polymers 146:104428 (2020).

10.1016/j.reactfunctpolym.2019.104428
41

Dhanda, V., Revolutionizing material: The rise of bio leather as eco-friendly and sustainable approach (2024).

10.33545/2618060X.2024.v7.i11b.1954
42

Pešić, M., Nemeša, I., Bukhonka, N., and Bozoki, V., Fruit Based Sustainable Textile Materials (2023).

43

Sureshkumar, P. S. Thanikaivelan, P., and Phebe, K. Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: An approach toward making amalgamated leather products, Journal of Natural Fibers 9(1):41-54 (2012).

10.1080/15440478.2012.652834
44

Thomas, S., Pothan, L. A., and Jacob, M. Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre, Journal of Applied Polymer Science 96(5):1699-1712 (2005).

45

Teklay, A., Shrestha, P., and Subramanian, K. Preparation and characterization of composite sheets from solid leather waste with plant fibers: a waste utilization effort, Journal of Cleaner Production 325:129345 (2021).

46

Quintana, E., Valls, C., and Roncero, M. B., Dissolving-grade pulp: a sustainable source for fiber production, Wood Science and Technology 58(1):23-85 (2024).

10.1007/s00226-023-01519-w
47

Thanikaivelan, P., Sureshkumar, P. S., and Chandrasekaran, B. Development of green leather alternative from natural rubber and pineapple leaf fiber, Journal of Cleaner Production 352:131582 (2022).

48

Pandit, A. P. and Avachat, A. M., Nonwoven textiles in smart and wearable technologies, Smart Textiles from Natural Resources 367-394 (2024).

10.1016/B978-0-443-15471-3.00004-2
49

Muthu, S. S. and Ramchandani, M., Natural/Agro-derived Versus Artificial Vegan Leather: How Leather Alternatives Influence the Sustainable Luxury and Fashion Industry, 2024 Vegan Alternatives for Leather, Springer Nature, Switzerland, pp. 63-74.

10.1007/978-3-031-65365-0_4
50

Malabadi, R. B., Kolkar, K. P., Chalannavar, R. K., and Baijnath. H., Plant-based leather production: An update, World Journal of Advanced Engineering Technology and Sciences 14(1):031-059 (2025).

10.30574/wjaets.2025.14.1.0648
51

Colin-Chavez, C., Soto-Valdez, H., Turrado-Saucedo, J., Rodriguez-Felix, A., Peralta, E., Saucedo-Corona, A. R., and Guzman-Corona, M., Papermaking as Potential Use of Fibers from Mexican Opuntia ficus-indica Waste, Biotecnia 23(1):141-150 (2021).

10.18633/biotecnia.v23i1.1315
52

Wjunow, C., Moselewski, K. L., Huhnen, Z., Sultanova, S., and Sabantina, L., Sustainable textiles from unconventional biomaterials-cactus based, Engineering Proceedings 37(1):58, (2023).

10.3390/ECP2023-14652
53

Lew, R. R., Biomechanics of hyphal growth, Biology of the Fungal Cell 83-94 (2019).

10.1007/978-3-030-05448-9_5
54

Arroyo, J., Farkaš, V., Sanz, A. B., and Cabib, E., Strengthening the fungal cell wall through chitin-glucan cross‐links: effects on morphogenesis and cell integrity, Cellular Microbiology 18(9):1239-1250 (2016).

10.1111/cmi.1261527185288
55

Vega, K. and Kalkum, M., Chitin, chitinase responses, and invasive fungal infections, International Journal of Microbiology 2012(1):920459 (2012).

10.1155/2012/92045922187561PMC3236456
56

Doudna, J. A. and Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9, Science 346(6213):1258096 (2014).

10.1126/science.125809625430774
57

Amobonye, A., Bhagwat, P., Singh, S., and Pillai, S., Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte, Fungal Biology 125(1):39-48 (2021).

10.1016/j.funbio.2020.10.00333317775
58

Kniep, J., Graupner, N., Reimer, J. J., and Müssig, J., Mycelium-based biomimetic composite structures as a sustainable leather alternative, Materials Today Communications 39:109100 (2024).

10.1016/j.mtcomm.2024.109100
59

Amobonye, A., Lalung, J., Awasthi, M. K., and Pillai, S., Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry, Sustainable Materials and Technologies e00724 (2023).

10.1016/j.susmat.2023.e00724
60

Whabi, V., Yu, B., and Xu, J., From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow, Journal of Fungi 10(3):183 (2024).

10.3390/jof1003018338535193PMC10970937
61

Elsacker, E., Vandelook, S., and Peeters, E., Recent technological innovations in mycelium materials as leather substitutes: a patent review, Frontiers in Bioengineering and Biotechnology 11:1204861 (2023).

10.3389/fbioe.2023.120486137609120PMC10441217
62

Karunarathne, A., Nabiyeva, G., Rasmussen, C. J., Alkhoury, K., Assem, N., Bauer, J., Chester, A. S., Khalizov, A. F., and Gor, G. Y., Effects of Humidity on Mycelium-Based Leather, ACS Applied Bio Materials 7(10):6441-6450 (2024).

10.1021/acsabm.4c0058639383329
63

Beppu, M. M., Vieira, R. S., Aimoli, C. G., and Santana, C. C., Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption, Journal of Membrane Science 301(1-2):126-130 (2007).

10.1016/j.memsci.2007.06.015
64

Paetau, I., Chen, C. Z., and Jane, J., Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption, Journal of Environmental Polymer Degradation 2:211-217 (1994).

10.1007/BF02067447
65

Appels, F. V., van den Brandhof, J. G., Dijksterhuis, J., de Kort, G. W., and Wösten, H. A., Fungal mycelium classified in different material families based on glycerol treatment, Communications Biology 3(1):334 (2020).

10.1038/s42003-020-1064-432591629PMC7320155
66

Scullin, M., Wenner, N., Chase, J., Miller, Q., and Ross, P., Penetration and adhesion of finishes for fungal materials through solubilization, emulsion, or dispersion in water-soluble materials and the use of surfactants. U.S. Pat. Appl. No. 11,807,983 (2023).

67

Verma, N., Jujjavarapu, S. E., and Mahapatra, C., Green sustainable biocomposites: Substitute to plastics with innovative fungal mycelium based biomaterial, Journal of Environmental Chemical Engineering 11(5):110396 (2023).

10.1016/j.jece.2023.110396
68

Midukov, N. P., Schrinner, T., Grossmann, H., Smolin, A. S., and Kurov, V. S., Effect of virgin fiber content on strength and stiffness characteristics of a three-layer testliner, BioResources 10(1):1747-1756 (2015).

10.15376/biores.10.1.1747-1756
69

Eshbaeva, U. J. and Djalilov, A. A., Composite technology for the production of paper and cardboard including synthetic fibers, Proceedings of the National Academy of Sciences of Belarus Chemical Series 58(4):418-422 (2022).

10.29235/1561-8331-2022-58-4-418-422
70

Sulaiman, N. S., Overview of Cellulose Fiber as Materials for Paper Production, Cellulose, CRC Press, pp. 253-267 (2023).

10.1201/9781003358084-17
71

Bednarowicz, A., Tarzyńska, N., Patlewicz, M., Pabjańczyk-Wlazło, E. K., Szparaga, G., and Draczyński, Z., Tailored Chitin Copolyesters: A Study of Butyric-Succinic Derivative for Advanced Material Applications (2024).

10.20944/preprints202412.1005.v138930873PMC11206315
72

Balasubramanian, V. and Moudgil, B. M., Antibacterial Properties of Soft Solids (Chitosan and Polyacrylic Acid Gel Particles) in Solution and on a Bio-Surface (VITRO-SKIN), KONA Powder and Particle Journal 2025012 (2024).

10.14356/kona.2025012
73

Lee, E. K. and Kim, Y. K., Synthesis and antimicrobial properties of the chitosan derivatives, Elastomers and Composites 56(4):254-263 (2021).

74

Bustillos, J., Loganathan, A., Agrawal, R., Gonzalez, B. A., Perez, M. G., Ramaswamy, S., Boesl, B., and Agarwal, A., Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties, ACS Applied Bio Materials 3:3145-3156 (2020)

10.1021/acsabm.0c0016435025358
75

Balasubramanian, M. and Sheykhmaleki, P., Comprehending the consumer behavior toward sustainable apparel, Sustainability 16(18):8026 (2024).

10.3390/su16188026
76

Malabadi, R. B., Kolkar, K. P., and Chalannavar, R. K., Plant-based leather production: An update, World Journal of Advanced Engineering Technology and Sciences 14(01):031-059 (2025).

10.30574/wjaets.2025.14.1.0648
77

Wjunow, C., Moselewski, K. L., Huhnen, Z., Sultanova, S. and Sabantina, L., Sustainable textiles from unconventional biomaterials-cactus based, Engineering Proceedings 37:58 (2023).

10.3390/ECP2023-14652
78

Rimantho, D., Chaerani, L., and Sundari, A. S., Initial mechanical properties of orange peel waste as raw material for vegan leather production, Case Studies in Chemical and Environmental Engineering 10:100786 (2024).

10.1016/j.cscee.2024.100786
79

Wijayarathna, E. R. K. B., Mohammadkhani, G., Soufiani, A. M., Adolfsson, K. H., Ferreira, J. A., Hakkarainen, M., Berglund, L., Heinmaa, I., Root, A., and Zamani, A., Fungal textile alternatives from bread waste with leather-like properties, Resources, Conservation & Recycling 179:10604 (2022).

10.1016/j.resconrec.2021.106041
80

Gandia, A., van den Brandhof, J. G., Appels, F. V. W., and Jones, M. P., Flexible fungal materials: Shaping the future, Trends in Biotechnology 39(12):1321-1331 (2021).

10.1016/j.tibtech.2021.03.00233812663
81

Raman, J., Kim, D. S., Kim, H. S., Oh, D. S., and Shin, H. J., Mycofabrication of mycelium-based leather from brown-rot fungi, Journal of Fungi 8:317 (2022).

10.3390/jof803031735330319PMC8950489
82

Jones, M., Gandia, A., John, S., and Bismarck, A., Leather-like material bio-fabrication using fungi, Nature Sustainability 7:1-8 (2020).

10.1038/s41893-020-00606-1
83

Meyer, M., Dietrich, S., Schulz, H., and Mondschein, A., Comparison of the technical performance of leather, artificial leather, and trendy alternatives, Coatings 11:226 (2021).

10.3390/coatings11020226
84

Saha, N., Fahanwi, A. N., Nguyen, H., and Saha, P., Environmentally friendly and animal-free leather: Fabrication and characterization, AIP Conference Proceedings 2289:020049 (2020).

10.1063/5.0028467
85

Prastiwi, I. E. and Anik, A., The impact of credit diversification on credit risk and performance of Indonesian banks, Global Review of Islamic Economics and Business 8(1):013-021 (2020).

10.14421/grieb.2020.081-02
86

Patel, J. and Sharma, J., Alternative applications of mushroom mycelium for environmental sustainability: opportunities, challenges and future perspective, Mushroom Research 32(2):99-113, (2023).

10.36036/MR.32.2.2023.141696
87

Asabuwa Ngwabebhoh, F., Saha, N., Saha, T., and Saha, P., Bio-innovation of new-generation nonwoven natural fibrous materials for the footwear industry: Current state-of-the-art and sustainability panorama, Journal of Natural Fibers 19(13):4897-4907 (2022).

10.1080/15440478.2020.1870635
88

Amobonye A., Lalung J., Awasthi M. K., and Pillai S., Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry, Sustainable Materials and Technologies 38:e00724 (2023).

10.1016/j.susmat.2023.e00724
89

Jayachandran A, Fundamentals of fiber dispersion in water, Master's Thesis, Mechanical Engineering Department, North Carolina State University, NC, USA (2001).

90

Vaidya N, The manufacturing of wet-laid hydro-entangled glass fibre composites for industrial application, Master's Thesis, Textiles, North Carolina State University, NC, USA (2002).

Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 57
  • No :1
  • Pages :5-21
  • Received Date : 2025-01-31
  • Revised Date : 2025-02-04
  • Accepted Date : 2025-02-04