Review
Geyer, R., Jambeck, J. R., and Law, K. L., Production, use, and fate of all plastics ever made, Science Advances 3(7):e1700782 (2017).
10.1126/sciadv.1700782PMC5517107Geyer, R., Mare plasticum - The plastic sea: Combatting plastic pollution through science and art (M. Streit-Bianchi, M. Cimadevila, and W. Trettnak, Eds.), Springer International Publishing, Cham, pp. 31-47 (2020).
10.1007/978-3-030-38945-1_2Geyer, R., Plastic waste and recycling (T. M. Letcher, Ed.), Academic Press, pp. 13-32 (2020).
10.1016/B978-0-12-817880-5.00002-5Pauly, J. L., Stegmeier, S. J., Allaart, H. A., Cheney, R. T., Zhang, P. J., Mayer, A. G., and Streck R. J., Inhaled cellulosic and plastic fibers found in human lung tissue, Cancer Epidemiology, Biomarkers & Prevention 7(5):419 (1998).
9610792Traylor, S. D., Granek, E. F., Duncan, M., and Brander, S. M., From the ocean to our kitchen table: Anthropogenic particles in the edible tissue of U.S. West Coast seafood species, Front Toxicol 6:1469995 (2024).
10.3389/ftox.2024.146999539776763PMC11703854Ashter, S. A., Introduction to bioplastics engineering, William Andrew, p. 302 (2016).
10.1016/B978-0-323-39396-6.00001-4Gu, J.-D., Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances, International Biodeterioration & Biodegradation 52(2):69 (2003).
10.1016/S0964-8305(02)00177-4Leja, K. and Lewandowicz, G., Polymer Biodegradation and Biodegradable Polymers - A Review, Polish Journal of Environmental Studies 19(2):255 (2010).
Malherbe, S. and Cloete, T. E., Lignocellulose biodegradation: Fundamentals and applications, Reviews in Environmental Science and Biotechnology 1(2):105 (2002).
10.1023/A:1020858910646Polman, E. M. N., Gruter, G.-J. M., Parsons, J. R., and Tietema, A., Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review, Science of The Total Environment 753:141953 (2021).
10.1016/j.scitotenv.2020.14195332896737Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., and Camino, G., Biodegradation of poly(lactic acid) and its nanocomposites, Polymer Degradation and Stability 94(10):1646 (2009).
10.1016/j.polymdegradstab.2009.07.001Yagi, H., Ninomiya, F., Funabashi, M., and Kunioka, M., Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters, Polymer Degradation and Stability 98(6):1182 (2013).
10.1016/j.polymdegradstab.2013.03.010Yagi, H., Ninomiya, F., Funabashi, M., and Kunioka, M., Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters, Polymer Degradation and Stability 110:278 (2014).
10.1016/j.polymdegradstab.2014.08.031Yagi, H., Ninomiya, F., Funabashi, M., and Kunioka, M., Anaerobic biodegradation tests of poly(lactic acid) and polycaprolactone using new evaluation system for methane fermentation in anaerobic sludge, Polymer Degradation and Stability 94(9):1397 (2009).
10.1016/j.polymdegradstab.2009.05.012Weng, Y.-X., Jin, Y.-J., Meng, Q.-Y., Wang, L., Zhang, M., and Wang, Y.-Z., Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions, Polymer Testing 32(5):918 (2013).
10.1016/j.polymertesting.2013.05.001Lee, S. H., Kim, I. Y., and Song, W. S., Biodegradation of polylactic acid (PLA) fibers using different enzymes, Macromolecular Research 22(6):657 (2014).
10.1007/s13233-014-2107-9Qi, X., Ren, Y., and Wang, X., New advances in the biodegradation of Poly(lactic) acid, International Biodeterioration & Biodegradation 117:215 (2017).
10.1016/j.ibiod.2017.01.010Pattanasuttichonlakul, W., Sombatsompop, N., and Prapagdee, B., Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium, International Biodeterioration & Biodegradation 132:74 (2018).
10.1016/j.ibiod.2018.05.014Nakayama, A., Yamano, N., and Kawasaki, N., Biodegradation in seawater of aliphatic polyesters, Polymer Degradation and Stability 166:290 (2019).
10.1016/j.polymdegradstab.2019.06.006Janczak, K., Dąbrowska, G. B., Raszkowska-Kaczor, A., Kaczor, D., Hrynkiewicz, K., and Richert, A., Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, International Biodeterioration & Biodegradation 155:105087 (2020).
10.1016/j.ibiod.2020.105087Rutkowska, M., Jastrzębska, M., and Janik, H., Biodegradation of polycaprolactone in sea water, Reactive and Functional Polymers 38(1):27 (1998).
10.1016/S1381-5148(98)00029-7Lefèvre, C., Tidjani, A., Vander Wauven, C., and David, C., The interaction mechanism between microorganisms and substrate in the biodegradation of polycaprolactone: Polycaprolactone Biodegradation, Journal of Applied Polymer Science 83(6):1334 (2002).
10.1002/app.10124Funabashi, M., Ninomiya, F., and Kunioka, M., Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method, Journal of Polymers and the Environment 15(1):7 (2007).
10.1007/s10924-006-0041-4Knapp, J. S. and Bromley-Challoner, K. C. A., Recalcitrant organic compounds, Academic Press, London, pp. 559-595 (2003).
10.1016/B978-012470100-7/50035-2Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., and Schué, F., Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), Pure and Applied Chemistry 84(2):377 (2012).
10.1351/PAC-REC-10-12-04Leja, K. and Lewandowicz, G., Polymer biodegradation and biodegradable polymers - A review, Polish Journal of Environmental Studies 19(2):255 (2010).
ISO, ISO 14851 Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium - Method by measuring the oxygen demand in a closed respirometer, International Standard (2019).
Kwon, S., Zambrano, M. C., Venditti, R. A., and Pawlak, J. J., Aerobic aquatic biodegradation of bio-based and biodegradable polymers: Kinetic modeling and key factors for biodegradability, International Biodeterioration & Biodegradation 185:105671 (2023).
10.1016/j.ibiod.2023.105671Banerjee, A., Chatterjee, K., and Madras, G., Enzymatic degradation of polymers: A brief review, Materials Science and Technology 30(5):567 (2014).
10.1179/1743284713Y.0000000503Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., and Del Río, J. C., Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin, International Microbiology 8(3):195 (2005).
16200498Pérez, J., Muñoz-Dorado, J., de la Rubia, T., and Martínez, J., Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview, International Microbiology 5(2):53 (2002).
10.1007/s10123-002-0062-312180781Buchanan, C. M., Gardner, R. M., and Komarek, R. J., Aerobic biodegradation of cellulose acetate, Journal of Applied Polymer Science 47(10):1709 (1993).
10.1002/app.1993.070471001Haske-Cornelius, O., Pellis, A., Tegl, G., Wurz, S., Saake, B., Ludwig, R., Sebastian, A., Nyanhongo, G., and Guebitz, G., Enzymatic systems for cellulose acetate degradation, Catalysts 7(10):287 (2017).
10.3390/catal7100287Puls, J., Wilson, S. A., and Hölter, D., Degradation of cellulose acetate-based materials: A review, Journal of Polymers and the Environment 19(1):152 (2011).
10.1007/s10924-010-0258-0Tokiwa, Y. and Calabia, B. P., Biodegradability and biodegradation of polyesters, Journal of Polymers and the Environment 15(4):259 (2007).
10.1007/s10924-007-0066-3Bher, A., Mayekar, P. C., Auras, R. A., and Schvezov, C. E., Biodegradation of biodegradable polymers in mesophilic aerobic environments, International Journal of Molecular Sciences 23(20):12165 (2022).
10.3390/ijms23201216536293023PMC9603655Healy Jr, J. B. and Young, L. Y., Anaerobic biodegradation of eleven aromatic compounds to methane, Applied and Environmental Microbiology 38(1):84 (1979).
10.1128/aem.38.1.84-89.197916345419PMC243439Raj, A., Reddy, M. M. K., Chandra, R., Purohit, H. J., and Kapley, A., Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill, Biodegradation 18(6):783 (2007).
10.1007/s10532-007-9107-917308883Stone, B. A., Svensson, B., Collins, M. E., and Rastall, R. A., Glycoscience: Chemistry and chemical biology (B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds.), Springer, Berlin, Heidelberg, pp. 2325-2375 (2008).
10.1007/978-3-540-30429-6_60Poshina, D. N., Raik, S. V., Poshin, A. N., and Skorik, Y. A., Accessibility of chitin and chitosan in enzymatic hydrolysis: A review, Polymer Degradation and Stability 156:269 (2018).
10.1016/j.polymdegradstab.2018.09.005Honda, Y. and Kitaoka, M., The first glycosynthase derived from an inverting glycoside hydrolase, Journal of Biological Chemistry 281(3):1426 (2006).
10.1074/jbc.M51120220016301312Mathews, S. L., Pawlak, J., and Grunden, A. M., Bacterial biodegradation and bioconversion of industrial lignocellulosic streams, Applied Microbiology and Biotechnology 99(7):2939 (2015).
10.1007/s00253-015-6471-y25722022Béguin, A. J.-P., The biological degradation of cellulose, FEMS Microbiology Reviews 13:25 (1994).
10.1016/0168-6445(94)90099-X8117466Sun, Y. and Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: A review, Bioresource Technology 83(1):1 (2002).
10.1016/S0960-8524(01)00212-712058826Fan, L. T., Lee, Y.-H., and Beardmore, D. H., Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis, Biotechnology and Bioengineering 22(1):177 (1980).
10.1002/bit.260220113Coughlan, M. P., The properties of fungal and bacterial cellulases with comment on their production and application, Biotechnology and Genetic Engineering Reviews 3(1):39 (1985).
10.1080/02648725.1985.10647809Arantes, V. and Saddler, J. N., Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis, Biotechnology for Biofuels 3(1):4 (2010).
10.1186/1754-6834-3-4PMC2844368Kerff, F., Amoroso, A., Herman, R., Sauvage, E., Petrella, S., Filée, P., Charlier, P., Joris, B., Tabuchi, A., Nikolaidis, N., and Cosgrove, D. J., Crystal structure and activity of Bacillussubtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization, Proceedings of the National Academy of Sciences 105(44):16876 (2008).
10.1073/pnas.0809382105PMC2579346Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., and Penttilä, M., Swollenin, a Trichodermareesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials, European Journal of Biochemistry 269(17):4202 (2002).
10.1046/j.1432-1033.2002.03095.xMalgas, S., van Dyk, J. S., and Pletschke, B. I., A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase, World Journal of Microbiology and Biotechnology 31(8):1167 (2015).
10.1007/s11274-015-1878-226026279Moreira, L. R. S. and Filho, E. X. F., An overview of mannan structure and mannan-degrading enzyme systems, Applied Microbiology and Biotechnology 79(2):165 (2008).
10.1007/s00253-008-1423-418385995Tews, I., Terwisscha van Scheltinga, A. C., Perrakis, A., Wilson, K. S., and Dijkstra, B. W., Substrate-assisted catalysis unifies two families of chitinolytic enzymes, Journal of the American Chemical Society 119(34):7954 (1997).
10.1021/ja970674iMatsumura, I. and Kirsch, J. F., Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis, Biochemistry 35(6):1881 (1996).
10.1021/bi951671q8639670Dall'Acqua, W. and Carter, P., Substrate-assisted catalysis: Molecular basis and biological significance, Protein Science 9(1):1 (2000).
10.1110/ps.9.1.110739241PMC2144443Bungay, H., Product opportunities for biomass refining, Enzyme and Microbial Technology 14(6):501 (1992).
10.1016/0141-0229(92)90145-EKuhad, R. C., Singh, A., and Eriksson, K.-E. L., Biotechnology in the pulp and paper industry (K. E. L. Eriksson, W. Babel, H. W. Blanch, et al., Eds.), Springer, Berlin, Heidelberg, pp. 45-125 (1997).
10.1007/BFb01020729204751Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N.-S., Hofrichter, M., and Rogalski, J., Biodegradation of lignin by white rot fungi, Fungal Genetics and Biology 27(2-3):175 (1999).
10.1006/fgbi.1999.115010441443Lewis, N. G. and Yamamoto, E., Lignin: Occurrence, biogenesis and biodegradation, Annual Review of Plant Physiology and Plant Molecular Biology 41(1):455 (1990).
10.1146/annurev.arplant.41.1.45511543592Kumar, A. and Chandra, R., Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment, Heliyon 6(2):e03170 (2020).
10.1016/j.heliyon.2020.e0317032095645PMC7033530Atiwesh, G., Parrish, C. C., Banoub, J., and Le, T. A. T., Lignin degradation by microorganisms: A review, Biotechnology Progress 38(2) (2021).
10.1002/btpr.322634854261Yadav, V. K., Gupta, N., Kumar, P., Dashti, M. G., Tirth, V., Khan, S. H., Yadav, K. K., Islam, S., Choudhary, N., Algahtani, A., Bera, S. P., Kim, D.-H., and Jeon, B.-H., Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology, Materials 15(3):953 (2022).
10.3390/ma1503095335160893PMC8838035Datta, R., Kelkar, A., Baraniya, D., Molaei, A., Moulick, A., Meena, R. S., and Formanek, P., Enzymatic degradation of lignin in soil: A review, Sustainability 9(7):1163 (2017).
10.3390/su9071163Harwood, C. S. and Parales, R. E., The β-ketoadipate pathway and the biology of self-identity, Annual Review of Microbiology 50(1):553 (1996).
10.1146/annurev.micro.50.1.5538905091Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., and Okoh, A. I., Lignin peroxidase functionalities and prospective applications, MicrobiologyOpen 6(1) (2017).
10.1002/mbo3.39427605423PMC5300883Uber, T. M., Backes, E., Saute, V. M. S., da Silva, B. P., Corrêa, R. C. G., Kato, C. G., Seixas, F. A. V., Bracht, A., and Peralta, R. M., Biotechnology of microbial enzymes (G. Brahmachari, Ed.) 2nd edition, Academic Press, pp. 129-164 (2023).
10.1016/B978-0-443-19059-9.00023-2Hofrichter, M., Review: Lignin conversion by manganese peroxidase (MnP), Enzyme and Microbial Technology 30(4):454 (2002).
10.1016/S0141-0229(01)00528-2Weng, C., Peng, X., and Han, Y., Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis, Biotechnology for Biofuels 14(1) (2021).
10.1186/s13068-021-01934-w33812391Boyle, C. D., Kropp, B. R., and Reid, I. D., Solubilization and mineralization of lignin by white rot fungi, Applied and environmental microbiology 58(10):3217 (1992).
10.1128/aem.58.10.3217-3224.199216348781PMC183083Kerem, Z. and Hadar, Y., Effect of manganese on preferential degradation of lignin by Pleurotusostreatus during solid-state fermentation, Applied and Environmental Microbiology 61(8):3057 (1995).
10.1128/aem.61.8.3057-3062.19957487038PMC167582Zhou, M., Fakayode, O. A., Ren, M., Li, H., Liang, J., Yagoub, A. E. A., Fan, Z., and Zhou, C., Laccase-catalyzed lignin depolymerization in deep eutectic solvents: Challenges and prospects, Bioresources and Bioprocessing 10(1) (2023).
10.1186/s40643-023-00640-938647951PMC10992038Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., and Sahu, J. N., Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renewable and Sustainable Energy Reviews 105:105 (2019).
10.1016/j.rser.2019.01.048De Gonzalo, G., Colpa, D. I., Habib, M. H. M., and Fraaije, M. W., Bacterial enzymes involved in lignin degradation, Journal of Biotechnology 236:110 (2016).
10.1016/j.jbiotec.2016.08.01127544286Lambertz, C., Ece, S., Fischer, R., and Commandeur, U., Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases, Bioengineered 7(3):145 (2016).
10.1080/21655979.2016.119170527295524PMC4927207Bugg, T. D. H., Ahmad, M., Hardiman, E. M., and Singh, R., The emerging role for bacteria in lignin degradation and bio-product formation, Current Opinion in Biotechnology 22(3):394 (2011).
10.1016/j.copbio.2010.10.00921071202Kirk, T. K. and Cullen, D., Enzymology and molecular genetics of wood degradation by white-rot fungi, pp. 273-307 (1998).
De la Cruz, F. B., Yelle, D. J., Gracz, H. S., and Barlaz, M. A., Chemical changes during anaerobic decomposition of hardwood, softwood, and old newsprint under mesophilic and thermophilic conditions, Journal of Agricultural and Food Chemistry 62(27):6362 (2014).
10.1021/jf501653h24967726Ximenes, F., Björdal, C., Cowie, A., and Barlaz, M., The decay of wood in landfills in contrasting climates in Australia, Waste Management 41:101 (2015).
10.1016/j.wasman.2015.03.03225863766Ximenes, F. A., Cowie, A. L., and Barlaz, M. A., The decay of engineered wood products and paper excavated from landfills in Australia, Waste Management 74:312 (2018).
10.1016/j.wasman.2017.11.03529203076Motte, J. C., Watteau, F., Escudié, R., Steyer, J. P., Bernet, N., Delgenes, J. P., and Dumas, C., Dynamic observation of the biodegradation of lignocellulosic tissue under solid-state anaerobic conditions, Bioresource Technology 191:322 (2015).
10.1016/j.biortech.2015.04.13026026233Liu, N., Li, Z., Chen, S., and Wang, H., Novel fibres prepared by cellulose diacetate using ionic liquid as plasticiser, Materials Research Innovations 19(sup9):S9 (2015).
10.1179/1432891715Z.0000000001991Wang, Y. S., Byrd, C. S., and Barlaz, M. A., Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay, Journal of Industrial Microbiology 13(3):147 (1994).
10.1007/BF01583999Wang, J., Wang, Q., Xu, Z., Zhang, W., and Xiang, J., Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate, Journal of Microbiology and Biotechnology 25(1):26 (2015).
10.4014/jmb.1405.0502525152056Wang, M., Ma, L., Kong, Z., Wang, Q., Fang, L., Liu, D., and Shen, Q., Insights on the aerobic biodegradation of agricultural wastes under simulated rapid composting conditions, Journal of Cleaner Production 220:688 (2019).
10.1016/j.jclepro.2019.02.163Wang, X., De la Cruz, F. B., Ximenes, F., and Barlaz, M. A., Decomposition and carbon storage of selected paper products in laboratory-scale landfills, Science of The Total Environment 532:70 (2015).
10.1016/j.scitotenv.2015.05.13226057726Kumar, M., Revathi, K., and Khanna, S., Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28, Carbohydrate Polymers 134:761 (2015).
10.1016/j.carbpol.2015.08.072Tsapekos, P., Kougias, P. G., Vasileiou, S. A., Treu, L., Campanaro, S., Lyberatos, G., and Angelidaki, I., Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues, Bioresource Technology 234:350 (2017).
10.1016/j.biortech.2017.03.04328340440Bohacz, J., Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases, Journal of Environmental Management 206:1052 (2018).
10.1016/j.jenvman.2017.11.07730029339Zhang, H.-Y., Krafft, T., Gao, D., Zheng, G.-D., and Cai, L., Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust, Drying Technology 36(3):316 (2018).
10.1080/07373937.2017.1326502Huang, W., Wachemo, A. C., Yuan, H., and Li, X., Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora, Bioresource Technology 283:76 (2019).
10.1016/j.biortech.2019.02.03530901591Liu, X., Bayard, R., Benbelkacem, H., Buffière, P., and Gourdon, R., Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics, Biomass and Bioenergy 81:534 (2015).
10.1016/j.biombioe.2015.06.021Buraimoh, O. M., Ilori, M. O., Amund, O. O., Michel, F. C., and Grewal, S. K., Assessment of bacterial degradation of lignocellulosic residues (sawdust) in a tropical estuarine microcosm using improvised floating raft equipment, International Biodeterioration & Biodegradation 104:186 (2015).
10.1016/j.ibiod.2015.06.010Wei, Y., Wu, D., Wei, D., Zhao, Y., Wu, J., Xie, X., Zhang, R., and Wei, Z., Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities, Bioresource Technology 271:66 (2019).
10.1016/j.biortech.2018.09.081Xu, X., Wu, P., Wang, T., Yan, L., Lin, M., and Chen, C., Synergistic effects of surfactant-assisted biodegradation of wheat straw and production of polysaccharides by Inonotus obliquus under submerged fermentation, Bioresource Technology 278:43 (2019).
10.1016/j.biortech.2019.01.02230677697Tsapekos, P., Kougias, P. G., Vasileiou, S. A., Lyberatos, G., and Angelidaki, I., Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate, Bioresource Technology 225:246 (2017).
10.1016/j.biortech.2016.11.081Kwon, S., Zambrano, M. C., Pawlak, J. J., and Venditti, R. A., Effect of lignocellulosic fiber composition on the aquatic biodegradation of wood pulps and the isolated cellulose, hemicellulose and lignin components: Kinetic modelling of the biodegradation process, Cellulose 28(5):2863 (2021).
10.1007/s10570-021-03680-6Zhang, Q., Song, M., Xu, Y., Wang, W., Wang, Z., and Zhang, L., Bio-based polyesters: Recent progress and future prospects, Progress in Polymer Science 120:101430 (2021).
10.1016/j.progpolymsci.2021.101430Satti, S. M. and Shah, A. A., Polyester‐based biodegradable plastics: An approach towards sustainable development, Letters in Applied Microbiology 70(6):413 (2020).
10.1111/lam.1328732086820Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., Priji, P., Josh, M. S., and Benjamin, S., Versatility of microbial proteases, Advances in Enzyme Research 1(3):39 (2013).
10.4236/aer.2013.13005Boczar, B. A., Forney, L. J., Begley, W. M., Larson, R. J., and Federle, T. W., Characterization and distribution of esterase activity in activated sludge, Water Research 35(17):4208 (2001).
10.1016/S0043-1354(01)00150-611791851Kawai, F., Polylactic acid (pla)-degrading microorganisms and PLA depolymerases, ACS Symposium Series (H. N. Cheng and R. A. Gross, Eds.), American Chemical Society, Washington, DC, pp. 405-414 (2010).
10.1021/bk-2010-1043.ch027Oda, Y., Yonetsu, A., Urakami, T., and Tonomura, K., Degradation of polylactide by commercial proteases, Journal of Polymers and the Environment 8(1):29 (2000).
10.1023/A:1010120128048Hoshino, A. and Isono, Y., Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenessp., Biodegradation 13(2):141 (2002).
10.1023/a:102045032630112449316- Publisher :Korea Technical Association of The Pulp and Paper Industry
- Publisher(Ko) :한국펄프종이공학회
- Journal Title :Journal of Korea TAPPI
- Journal Title(Ko) :펄프종이기술
- Volume : 57
- No :2
- Pages :5-19
- Received Date : 2025-04-08
- Revised Date : 2025-04-17
- Accepted Date : 2025-04-18
- DOI :https://doi.org/10.7584/JKTAPPI.2025.4.57.2.5