All Issue

2024 Vol.56, Issue 3 Preview Page

Research Article

30 June 2024. pp. 27-34
Abstract
References
1

Cadena, E. M., Chriac, A. I., Pastor, F. J., Diaz, P., Vidal, T., and Torres, A. L., Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp, Biotechnology progress 26(4):960-967 (2010).

10.1002/btpr.41120730755
2

Suurnäkki, A., Tenkanen, M., Siika-aho, M., Niku-Paavola, M. L., Viikari, L., and Buchert, J., Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp, Cellulose 7:189-209 (2000).

10.1023/A:1009280109519
3

Yang, M., Li, J., Wang, S., Zhao, F., Zhang, C., Zhang, C., and Han, S., Status and trends of enzyme cocktails for efficient and ecological production in the pulp and paper industry, Journal of Cleaner Production 138196 (2023).

10.1016/j.jclepro.2023.138196
4

Kumar, A., Ram, C., and Tazeb, A., Enzyme-assisted pulp refining: an energy saving approach, Physical Sciences Reviews 6(2):20190046 (2020).

10.1515/psr-2019-0046
5

Wong, K. K. and Mansfield, S. D., Enzymatic processing for pulp and paper manufacture-a review, APPITA Journal 52(6):409-418 (1999).

6

Schwarz, W., The cellulosome and cellulose degradation by anaerobic bacteria, Applied Microbiology and Biotechnology 56:634-649 (2001).

10.1007/s00253010071011601609
7

Esteghlalian, A. R., Mansfield, S. D., and Saddler, J. N., Cellulases: Agents for Fiber Modification or Bioconversion? The effect of substrate accessibility on cellulose enzymatic hydrolyzability, Progress in Biotechnology 21:21-36 (2002).

10.1016/S0921-0423(02)80005-3
8

Dienes, D., Egyhazi, A., and Reczey, K., Treatment of recycled fiber with Trichoderma cellulases, Industrial Crops and Products 20(1):11-21 (2004).

10.1016/j.indcrop.2003.12.009
9

Park, S. Y., Lee, S., Im, W., Lee, H. L., and Youn, H. J., Combined enzymatic pretreatment of pulp for production of CNF, Journal of Korea TAPPI, 53(5):5-15 (2021).

10.7584/JKTAPPI.2021.10.53.5.5
10

Jo, H. M., Lee, Y. H., Kim, D. H., Lee, S. H., and Lee, J. Y., Effect of Enzyme-pretreated Cellulose Nanofiber on the Strength of Coloring Paper Used for the Production of Fruit Bags, Journal of Korea TAPPI 53(6):12-19 (2021).

10.7584/JKTAPPI.2021.12.53.6.12
11

Jo, H. M., Lee, J. Y., Kim, S. H., Lee, Y. H., and Kim, C. H., Effect of enzyme type on the control of fluorescent whitening agents during recycling, BioResources 15(4):9462 (2020).

10.15376/biores.15.4.9462-9473
12

Imran, M., Bano, S., Nazir, S., Javid, A., Asad, M. J., and Yaseen, A., Cellulases production and application of cellulases and accessory enzymes in pulp and paper industry: a review, PSM Biological Research 4(1):29-39 (2019).

13

Béguin, P. and Aubert, J. P., The biological degradation of cellulose, Federation of European Microbiological Societies Microbiology Reviews 13(1):25-58 (1994).

10.1111/j.1574-6976.1994.tb00033.x8117466
14

Bajpai, P., Application of enzymes in the pulp and paper industry, Biotechnology Progress 15(2):147-157 (1999).

10.1021/bp990013k10194388
15

Liu, J. and Hu, H., The role of cellulose binding domains in the adsorption of cellulases onto fibers and its effect on the enzymatic beating of bleached kraft pulp, BioResources 7(1):0878-0892 (2012).

10.15376/biores.7.1.878-892
16

Hwang, K., Park, J., Chun, S. J., Oh, Y., Lee, J., Lee, T. J., and Gwon, J., Characterization of Cellulose Fibers According to Cellulase-Active Microbial Pretreatment, Journal of Korea TAPPI 55(2):19-29 (2023).

10.7584/JKTAPPI.2023.4.55.2.19
17

Nagl, M., Haske-Cornelius, O., Skopek, L., Pellis, A., Bauer, W., Nyanhongo, G. S., and Guebitz, G., Biorefining: the role of endoglucanases in refining of cellulose fibers. Cellulose 28(12):7633-7650 (2021).

10.1007/s10570-021-04022-2
18

Singh, R., Bhardwaj, N. K., and Choudhury, B., Cellulase-assisted refining optimization for saving electrical energy demand and pulp quality evaluation, Journal of SIR 74(8):471-475 (2015).

19

Shamim, A., Jain, R., Mediratta, R., Prasad, K. D., and Arora, S. S., Enzymatic treatment on chemical pulp in beating/ refining process- An attempt towards energy conservation, Journal of IPPTA 18(3):127-132 (2006).

20

Wang, X., Maloney, T. C., and Paulapuro, H., Fibre fibrillation and its impact on sheet properties. Paperi ja puu, 89(3):148 (2007).

21

Shin, S. J. and Cho, N. S., Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy, Cellulose 15(2):255260 (2008).

10.1007/s10570-007-9156-6
22

Mansfield, S. D., Gilkes, N. R., Warren, R. A. J., and Kilburn, D. G., The effects of recombinant Cellulomonas fimi β-1, 4-glycanases on softwood kraft pulp fibre and paper properties, In Progress in Biotechnology Vol. 21, pp.301-310 (2002).

10.1016/S0921-0423(02)80033-8
23

Noe, P., Chevalier, J., Mors, F., and Comtat, J., Action of xylanases on chemical pulp fibers part II: Enzymatic beating, Journal of Wood Chemistry and Technology 6(2):167-184 (1986).

10.1080/02773818608085222
24

Wilson, D. B., Evidence for a novel mechanism of microbial cellulose degradation, Cellulose 16(4):723-727 (2009).

10.1007/s10570-009-9326-9
25

Wilson, D. B., Three microbial strategies for plant cell wall degradation, Annals of the New York Academy of Sciences 1125(1):289-297 (2008).

10.1196/annals.1419.02618378599
26

Marjamaa, K. and Kruus, K., Enzyme biotechnology in degradation and modification of plant cell wall polymers, Physiologia Plantarum 164(1):106-118 (2018).

10.1111/ppl.1280029987848
27

Morais, F. P., Carta, A. M. M., Amaral, M. E., and Curto, J. M., Cellulose fiber enzymatic modification to improve the softness, strength and absorption properties of tissue papers, BioResources 16(1):846 (2021).

10.15376/biores.16.1.846-861
28

Shin, S. J., Quantitative Analysis of Reaction Products from Glucose and Xylose in Acidic Aqueous Medium by 1 H-NMR Spectroscopic Method, Journal of the Korean TAPPI 41(4):287-292 (2013).

10.5658/WOOD.2013.41.4.287
29

Jacobs, A., Larsson, P. T., and Dahlman, O., Distribution of uronic acids in xylans from various species of soft-and hardwood as determined by MALDI mass spectrometry, Biomacromolecules 2(3):979-990 (2001).

10.1021/bm010062x11710059
30

Cao, X., Lim, S. K., Song, W. Y., Shin, S. J., and Seong, H. A., Impact of carboxymethylation pretreatment on bleached rice hull nanofiber by grinding, Journal of Korea TAPPI 53(6):146-156 (2021).

10.7584/JKTAPPI.2021.12.53.6.146
31

Silva, T. C. F., Colodette, J. L., Lucia, L. A., Oliveira, R. C. D., Oliveira, F. N., and Silva, L. H. M., Adsorption of chemically modified xylans on eucalyptus pulp and its effect on the pulp physical properties, Industrial and Engineering Chemistry Research 50(2):1138-1145 (2011).

10.1021/ie101960a
32

Kolari, P., Enzymatic treatment of chemi-thermomechanical pulp Bachelor's thesis. Tampere Unicersity of Applied Sciences (2013).

33

Kim, H. J., Jo, B. M., and Lee, S. H., Potential for energy saving in refining of cellulase-treated kraft pulp, Journal of Industrial and Engineering Chemistry 12(4):578-583 (2006).

34

Verma, P., Bhardwaj, N. K., and Chakraborti, S. K., Enzymatic upgradation of secondary fibers, Journal of IPPTA 22(4):133-136 (2010).

35

Schönberg, C., Oksanen, T., Suurnäkki, A., Kettunen, H. and Buchert, J., The importance of xylan for the strength properties of spruce kraft pulp fibres, Holzforschung 55:639-644 (2001).

10.1515/HF.2001.104
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 56
  • No :3
  • Pages :27-34
  • Received Date : 2024-05-22
  • Revised Date : 2024-06-17
  • Accepted Date : 2024-06-18