All Issue

2025 Vol.57, Issue 1 Preview Page

Research Article

28 February 2025. pp. 41-49
Abstract
References
1

Zohuriaan-Mehr, M. J., Omidian, H., Doroudiani, S., and Kabiri, K., Advances in non-hygienic applications of superabsorbent hydrogel materials, Journal of Materials Science 45:5711-5735 (2010).

10.1007/s10853-010-4780-1
2

Chirani, N., Yahia, L. H., Gritsch, L., Motta, F. L., Chirani, S., and Farè, S., History and applications of hydrogels, Journal of biomedical sciences, 4(02):1-23 (2015).

3

Gyles, D. A., Castro, L. D., Silva Jr, J. O. C., and Ribeiro-Costa, R. M., A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations, European Polymer Journal 88:373-392 (2017).

10.1016/j.eurpolymj.2017.01.027
4

Thivya, P., Akalya, S., and Sinija, V. R., A comprehensive review on cellulose-based hydrogel and its potential application in the food industry, Applied Food Research 2(2):100161 (2022).

10.1016/j.afres.2022.100161
5

Jia, Y., Wang, X., Huo, M., Zhai, X., Li, F., and Zhong, C., Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel, Nanomaterials and Nanotechnology 7:1847980417707172 (2017).

10.1177/1847980417707172
6

Choi, S. R. and Lee, J. M., Fabrication of Superabsorbent Biogel from Carboxymethyl Cellulose, Journal of Korea TAPPI 53(1):47-54 (2021).

10.7584/JKTAPPI.2021.02.53.1.47
7

Choi, S. R. and Lee, J. M., Fabrication of superabsorbent material from carboxymethyl cellulose and seaweed, Journal of Korea TAPPI 54(1):26-34 (2022).

10.7584/JKTAPPI.2022.2.54.1.26
8

Choi, S. R. and Lee, J. M., Fabrication and characterization of biomass-derived superabsorbent Bio-gel, Journal of Korea TAPPI 55(3):51-59 (2023).

10.7584/JKTAPPI.2023.6.55.3.51
9

He, X. and Lu, Q., Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review, Carbohydrate Polymers 301:120351 (2023).

10.1016/j.carbpol.2022.12035136446511
10

Shen, X., Shamshina, J. L., Berton, P., Gurau, G., and Rogers, R. D., Hydrogels based on cellulose and chitin: fabrication, properties, and applications, Green Chemistry 18(1):53-75 (2016).

10.1039/C5GC02396C
11

Liu, P., Zhai, M., Li, J., Peng, J., and Wu, J., Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels, Radiation Physics and Chemistry 63(3-6):525-528 (2002).

10.1016/S0969-806X(01)00649-1
12

Yoshii, F., Zhao, L., Wach, R. A., Nagasawa, N., Mitomo, H., and Kume, T., Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208:320-324 (2003).

10.1016/S0168-583X(03)00624-4
13

Jeong, S. I,, Park, J. S., Gwon, H., An, S., Song, B. R., Kim, Y. J., M, B. H., Kim, M. S., and Lim, Y., Radiation-crosslinked carboxymethyl cellulose/porcine cartilage acellular matrix hydrogel films to prevent peritoneal adhesions with physical properties and anti-adhesivity, Korean Chemical Engineering Research 55(1):34-39 (2017).

14

Choi, S. R., Park, S. Y., Im, H. J., Kim, J. H., and Lee, J. M., Optimization of Manufacturing Conditions for Radiation-Crosslinked Hydrogels-Part 1: Effects of Raw Material Mixing Ratios on Hydrogel Properties-, Journal of Korea TAPPI 56(6):84-93 (2024).

10.7584/JKTAPPI.2024.12.56.6.84
15

Owen, M. R., Luscombe, C., Lai, Godbert, S., Crookes, D. L., and Emiabata-Smith, D., Efficiency by design: optimisation in process research. Organic Process Research & Development, 5(3):308-323 (2001).

10.1021/op000024q
16

Karim, M. Z., Chowdhury, Z. Z., Abd Hamid, S. B., and Ali, M. E., Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst, Materials 7(10):6982-6999 (2014).

10.3390/ma710698228788226PMC5456008
17

James, G., Witten, D., Hastie, T., Tibshirani, R., and Taylor, J., An introduction to statistical learning: With applications in python, Springer Nature (2023).

10.1007/978-3-031-38747-0
18

Mubarak, A. A., Ilyas, R. A., Ngadi, N., Nordin, A. H., and Alkbir, M. F. M., Isolation and characterization of cellulose from sugarcane bagasse fiber (Saccharum officinarum) via delignification and mercerization treatment using response surface modeling (RSM), Biomass Conversion and Biorefinery 1-15 (2024).

10.1007/s13399-024-05692-1
19

Santra, D. and Sarkar, M., Optimization of process variables and mechanism of arsenic (V) adsorption onto cellulose nanocomposite, Journal of Molecular Liquids 224:290-302 (2016).

10.1016/j.molliq.2016.09.104
20

Ham, J. Y., Choi, E. J., Kim, E. C., and Park, C. M., A Study on Development of Bicycle Mode Choice Models, The 68th Conference of Korean Society of Transportation 68:412-146 (2013).

21

Wisniak, J. and Polishuk, A., Analysis of residuals-a useful tool for phase equilibrium data analysis, Fluid Phase Equilibria 164(1):61-82.(1999).

10.1016/S0378-3812(99)00246-0
22

Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., and Othaman, R., Preparation of cellulose-based hydrogel: A review, Journal of Materials Research and Technology 10:935-952 (2021).

10.1016/j.jmrt.2020.12.012
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 57
  • No :1
  • Pages :41-49
  • Received Date : 2025-01-20
  • Revised Date : 2025-02-04
  • Accepted Date : 2025-02-04